Kategorien
Seiten
-

Akustik-Blog

Kolloquium

Jan
25
Fr
Saskia Wepner: Praxissemester bei Bosch Engineering
Jan 25 um 11:00 – 11:30

Dieses Praktikum wurde bei der Bosch Engineering GmbH am Standort Abstatt abgeleistet. Das Unternehmen ist hauptsächlich im Bereich Automotive tätig und baut seit 2017 ebenfalls Akustik-Dienstleistungen auf. Hierzu ist ein Akustik Test Center erbaut worden, das mehrere Prüfstände sowie ein Audiolabor umfasst. Aufgabe in diesem Praktikum war der Aufbau des Audiolabors für Akustische Virtuelle Realität (AVR). Mithilfe des Labors sollen Hörversuche und Demonstrationen von realitätsnahen auditiven Szenen dargestellt werden können. Diese Aufgabe beinhaltet zwei Teilaufgaben: Zum Einen die raumakustische Auslegung des Audiolabors und zum Andern die Umsetzung einer räumlichen Klangwiedergabe mittels Ambisonics. Im ersten Teil der Praktikumsaufgabe wurde eine Raumakustiksimulation erstellt und durchgeführt um die Auslegung des Audiolabors nach ITU-R BS.11166-3 zu gewährleisten. Die beinhaltet die Betrachtung verschiedener Materialien mit unterschiedlichen Absorptionseigenschaften. Im zweiten Teil wurden passende Hardwarekomponenten für das Wiedergabesystem ausgewählt. Weiterhin wurde das geplante Wiedergabesystem aufgebaut und die dazu benötigte Software implementiert. Als sogenannte Digital Audio Workstation wurde REAPER verwendet in das die IEM Plug-in Suite für die Ambisonics-Berechnungen integriert wurde.

Feb
22
Fr
Jan-Gerrit Richter: Fast Measurement of Individual Head-Related Transfer Functions
Feb 22 um 11:00 – 12:00
Sogenannte Außenohrübertragungsfunktionen (engl. Head-Related Transfer Functions, HRTFs) werden genutzt, um virtuelle Schallquellen an beliebigen räumlichen Positionen zu erzeugen. Dieses Verfahren, die binaurale Synthese, ist Grundlage für die physikalisch korrekte Wiedergabe von simulierten akustischen Szenen jeglicher Art. Die HRTFs beschreiben den Einfluss von Kopf, Torso und Pinna auf das Schallfeld. Hierbei werden sowohl Zeit- als auch Frequenzeinflüsse zwischen den Ohren erfasst, welche jedoch von der Einfallsrichtung des Schalls abhängig sind. Die HRTF besitzt also zusätzlich zu einer Frequenzabhängigkeit auch eine hohe Abhängigkeit hinsichtlich der Quellposition. Mittels moderner Messaufbauten sind Messungen mit hochpräziser räumlicher Auflösung möglich, welche jedoch bis zu 5 Stunden für eine den Kopf umschließender Sphäre in Anspruch nehmen. Diese lange Messdauer bei den klassischen Verfahren schließt individuelle Messungen an menschlichen Probanden aus.
In dieser Arbeit wird ein Messsystem evaluiert und optimiert, welches individuelle Messung in einer kurzen Dauer mit hoher räumlicher Auflösung ermöglich. Mit Hilfe dieses Systems kann die Messzeit für eine Messung mit räumlicher Auflösung von 5° in Azimuth and 2.5° in Elevation von 5 Stunden auf 7 Minuten reduziert werden.
Der erste Teil der Arbeit beschreibt die Evaluierung der Qualität der Messungen. Zu diesem Zweck werden objektive Fehlermaße definiert, welche Unterschiede zu einer Referenzmessung zu einem frequenzabhängigen Maß zusammenfassen. Aus diesem Maß werden Messfehler an verschiedener Objekte mit unterschiedlicher räumlicher Komplexität evaluiert welche mit Messungen aus etablierten Systemen, sowie analytische Lösungen und Simulationen verglichen werden. Das Ziel ist es, die vom Messsystem verursachten Störungen frequenzabhängig zu erkennen und zu bewerten. Eine subjektive Evaluierung der Qualität der gemessenen HRTFs wird hinsichtlich der Lokalisationsgenauigkeit von virtuellen Quellen, welche HRTFs aus schnellen Messungen und einer Referenzmessung verwenden, durchgeführt. Der Vergleich aus HRTFs einer schnellen Messung und einer Messung mithilfe eines etablierten Systems zeigt keinen signifikanter Einfluss des schnellen Messsystems auf die Lokalisationsgenauigkeit. Zusätzlich wird die Lokalisationsgenauigkeit mit individuellen HRTFs in weiteren Versuchen getestet. Die Ergebnisse, welche zur Evaluierung mit Werten aus der Literatur verglichen  werden, legen keine Beeinträchtigung der HRTFs durch die schnelle Messung nahe.
Um die Messzeit weiter zu reduzieren, wird die Messung in einem weiteren Schritt um sogenannte kontinuierlicher Drehung erweitert. Hierzu wird eine Methode zur Kompensation dieser Drehung während der Messung entwickelt. Dieses Verfahren wird sowohl objektiv und subjektiv evaluiert, um die schnellste Drehgeschwindigkeit, bei der keine hörbaren Artefakte in den reproduzierten Signalen erzeugen werden, zu ermitteln. Die Evaluierungen zeigen, dass mit dieser Messmethode die Messdauer bei einer typischen räumlichen Auflösung von 5° in Azimuth and 2.5° in Elevation zusätzlich um ca. 350% auf etwa 2 Minuten verkürzt werden kann.
Das hierzu vorgestellte Korrekturverfahren wird im letzten Kapitel der Arbeit erweitert, um den Einfluss von Probandenbewegung während der Messung zu kompensieren. Diese Bewegungen werden seit langem als wichtiger Störfaktor bei individuellen Messungen angesehen. In einer Studie wird zunächst untersucht, wie viel sich Probanden während der Messung bewegen. Hierbei wird verglichen, wie groß Unterschiede zwischen sitzenden oder stehenden Probanden und der Einfluss der Probandendrehung ist. Zusätzlich wird ein Feedback System entworfen, mit welchem die Probanden während der Messung selbst die Möglichkeit haben, ihre Position zu korrigieren. Die Grenzen der Bewegungskompensation werden mit Hilfe eines Kunstkopfes, der kontrolliert während der Messung bewegt wird, für einen Freiheitsgrad der Orientierung evaluiert. Die vorgestellte Kompensation ist in der Lage, jeglichen Fehler aus der Bewegung auf das Niveau von Messunsicherheiten zu reduzieren.
Mai
10
Fr
Xinya Xu: Objective and subjective analysis of room acoustics in open-plan offices
Mai 10 um 11:00 – 12:00

Im alltäglichen Arbeiten sind Menschen von verschiedenen Geräuschen bzw. Lärm umgeben, die sich maßgeblich auf die kognitive Arbeitsleistung und die akustische Zufriedenheit auswirken können. Diese akustische Wahrnehmung und ihre Auswirkung werden von verschiedenen Faktoren verursacht und beeinflusst. Daher wird eine vielfältige akustische Raumanalyse, sowohl vom objektiven, als auch vom subjektiven Aspekt, benötigt. In dieser Masterarbeit werden Großraumbüros mit gehörrichtigen Verfahren vermessen und deren akustische Eigenschaften analysiert. Zum einen wird die Raumakustik der Räume untersucht, zum anderen werden die Hintergrundgeräusche in Anwesenheit von Personen für die psychoakustische Analyse gemessen (In situ-Messungen). Dabei wird der ITA-Kunstkopf verwendet, um eine gehörrichtige Auswertung zu erhalten. Zusätzlich wird die subjektive Wahrnehmung untersucht, indem Frageböge an die anwesenden Personen in den Räumen verteilt werden, und während der In situ-Messungen bearbeitet werden. Anschließend werden die Relationen zwischen Raumakustik- und Psychoakustikparameter, sowie zwischen objektiven und subjektiven Ergebnissen ausgewertet.