
IT Center der RWTH Aachen University

Introduction to OpenMP

Christian Terboven <terboven@itc.rwth-aachen.de>

Dirk Schmidl <schmidl@itc.rwth-aachen.de>

18.03.2015 / Aachen, Germany

Stand: 12.03.2015

Version 2.3

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
2

Agenda of the OpenMP Part

Â WED

Ą 09:00h ï10:30h: Introduction to Parallel Programming with OpenMP I

Ą 11:00h ï12:30h: Introduction to Parallel Programming with OpenMP II

Ą 14:00h ï15:30h: Getting OpenMP up to Speed

Ą 16:00h ï17:30h: Advanced OpenMP Programming

Â WED evening: social event

Â THU

Ą 09:00h ï10:30h: Intel Xeon Phi Coprocessor

OpenMP for Accelerators

Ą 14:00h ï15:30h: Vectorization with OpenMP

Performance Analysis with LIKWID

Ą 16:00h ï17:30h: One (single) kernel for CPU, GPU and Xeon Phi

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
3

Introduction

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
4

History

Â De-facto standard for Shared-Memory Parallelization.

Â 1997: OpenMP 1.0 for FORTRAN

Â 1998: OpenMP 1.0 for C and C++

Â 1999: OpenMP 1.1 for FORTRAN

(errata)

Â 2000: OpenMP 2.0 for FORTRAN

Â 2002: OpenMP 2.0 for C and C++

Â 2005: OpenMP 2.5 now includes

both programming languages.

Â 05/2008: OpenMP 3.0 release

Â 07/2011: OpenMP 3.1 release

Â 07/2013: OpenMP 4.0 release

http://www.OpenMP.org

RWTHAachenUniversityis
a member of the OpenMP
Architecture Review Board
(ARB)since2006.

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
5

Â CPU is fast

Ą Order of 3.0 GHz

Â Caches:

Ą Fast, but expensive

Ą Thus small, order of MB

Â Memory is slow

Ą Order of 0.3 GHz

Ą Large, order of GB

Â A good utilization of caches is

crucial for good performance of HPC applications!

Single Processor System (dying out)

core

memory

off-chipcache

on-chipcache

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
6

Â There is a growing gap between core and memory performance:

Ą memory, since 1980: 1.07x per year improvement in latency

Ą single core: since 1980: 1.25x per year until 1986, 1.52x p. y. until 2000,

1.20x per year until 2005, then no change on a per-core basis

Ą Source: John L. Hennessy, Stanford University, and David A. Patterson, University of California, September 25, 2012

Memory Bottleneck

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
7

Â Because that beast would get too hot!

Fast clock cycles

make processor

chips more ex-

pensive, hotter

and more power

consuming.

Why is there no 4.0 GHz x86 CPU?

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
8

The number of transistors

on a chip is still doubling

every 24 months é

é but the clock speed is no

longer increasing that fast!

Instead, we will see many

more cores per chip!

Source: Herb Sutter

www.gotw.ca/publications/concurrency-ddj.htm

MooreósLaw still holds!

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
9

Â Since 2005/2006 Intel and AMD

are producing dual-core pro-

cessors for the mass market!

Â In 2006/2007 Intel and AMD

introduced quad-core

processors.

Â Ÿ Any recently bought PC or

laptop is a multi-core system

already!

Dual-Core Processor System

Core

memory

off-chipcache

Core

on-chipcache

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
10

Â Dual-socket Intel Woodcrest

(dual-core) system

Ą Two cores per chip, 3.0 GHz

Ą Each chip has 4 MB of L2

cache on-chip, shared by

both cores

Ą No off-chip cache

Ą Bus: Frontsidebus

Â SMP: Symmetric Multi Processor

Ą Memory access time is

uniform on all cores

Ą Limited scalabilty

Example for a SMP system

Core

memory

Core

on-chipcache

Core Core

on-chipcacheon-chipcache

bus

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
11

Â Memory can be accessed by several threads running on different

cores in a multi-socket multi-core system:

Shared Memory Parallelization

a=4

CPU1 CPU2

a

c=3+a

Look for tasksthat canbe executed
simultaneously(taskparallelism)

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
12

OpenMP Overview

&

Parallel Region

&

Basic Worksharing

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
13

Â OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access

a shared main memory.

Real architectures are

more complex, as we

will see later / as we

have seen.

Parallelization in OpenMP

employs multiple threads.

OpenMPósmachine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
14

Â OpenMP programs start with

just one thread: The Master.

Â Worker threads are spawned

at Parallel Regions, together

with the Master they form the

Team of threads.

Â In between Parallel Regions the

Worker threads are put to sleep.

The OpenMP Runtime takes care

of all thread management work.

Â Concept: Fork-Join.

Â Allows for an incremental parallelization!

OpenMP Execution Model

Master Thread Serial Part

Parallel
RegionSlave

ThreadsSlave
ThreadsWorker
Threads

Parallel
Region

Serial Part

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
15

Â The parallelism has to be expressed explicitly.

Â Structured Block

Ą Exactly one entry point at the top

Ą Exactly one exit point at the bottom

Ą Branching in or out is not allowed

Ą Terminating the program is allowed

(abort / exit)

Parallel Region and Structured
Blocks

C/C++

#pragma omp parallel

{

...

structured block

...

}

Â Specification of number of threads:

} Environment variable:

OMP_NUM_THREADS=é

} Or: Via num_threads clause:

add num_threads (num) to the

parallel construct

Fortran

!$ omp parallel

...

structured block

...

$! omp end parallel

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
16

Hello OpenMP World

Demo

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
17

Hello orphaned OpenMP World

Demo

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
18

Â From within a shell, global setting of the number of threads:

export OMP_NUM_THREADS=4

./ program

Â From within a shell, one-time setting of the number of threads:

OMP_NUM_THREADS=4 ./ program

Â Intel Compiler on Linux: ask the runtime for more information:

export KMP_AFFINITY=verbose

export OMP_NUM_THREADS=4

./ program

Starting OpenMP Programs on Linux

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
19

For Construct

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
20

Â If only the parallel construct is used, each thread executes the

Structured Block.

Â Program Speedup: Worksharing

Â OpenMPósmost common Worksharing construct: for

Ą Distribution of loop iterations over all threads in a Team.

Ą Scheduling of the distribution can be influenced.

Â Loops often account for most of a programósruntime!

For Worksharing

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

a[i] = b[i] + c[i];

}

Fortran

INTEGER :: i

!$ omp parallel do

DO i = 0, 99

a[i] = b[i] + c[i];

END DO

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
21

Worksharing illustrated

do i = 0, 99

a(i) = b(i) + c(i)

end do

do i = 0, 24

a(i) = b(i) + c(i)

end do

do i = 25, 49

a(i) = b(i) + c(i)

end do

do i = 50, 74

a(i) = b(i) + c(i)

end do

do i = 75, 99

a(i) = b(i) + c(i)

end do

MemoryPseudo-Code
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
22

Vector Addition

Demo

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
23

Â Can all loops be parallelized with for -constructs? No!

Ą Simple test: If the results differ when the code is executed backwards, the

loop iterations are not independent. BUT: This test alone is not sufficient:

Â Data Race: If between two synchronization points at least one thread

writes to a memory location from which at least one other thread

reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
24

Â A Critical Region is executed by all threads, but by only one thread

simultaneously (Mutual Exclusion).

Â Do you think this solution scales well?

Synchronization: Critical Region

C/C++

#pragma omp critical (name)

{

... structured block ...

}

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i]; }

}

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
25

#pragma omp parallel

{

#pragma omp for

for (i = 0; i < 99; i++)

{

s = s + a[i];

}

} // end parallel

Itósyour turn: Make It Scale!

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
26

Â In a reduction-operation the operator is applied to all variables in the
list. The variables have to be shared.

Ą reduction (operator:list)

Ą The result is provided in the associated reduction variable

Ą Possible reduction operators with initialization value:

+ (0), * (1), - (0),

& (~0), | (0), && (1), || (0),

^ (0), min (least number), max (largest number)

The Reduction Clause

C/C++

#pragma omp parallel for reduction (+:s)

for (i = 0; i < 99; i++)

{

s = s + a[i];

}

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
27

VTune: Detecting Hotspots

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
28

VTune Amplifier XE

Â Performance Analyses for

Ą Serial Applications

Ą Shared Memory Parallel Applications

Â Sampling Based measurements

Â Features:

Ą Hot Spot Analysis

Ą Concurrency Analysis

ĄWait

Ą Hardware Performance Counter Support

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
29

Stream

Â Standard Benchmark to measure memory performance.

Â Version is parallelized with OpenMP.

Measures Memory bandwidth for:

y=x (copy)

y=s*x (scale)

y=x+z (add)

y=x+s*z (triad)

for double vectors x,y,z and scalar double value s

#pragmaompparallel for
for (j=0; j<N; j++)

b[j] = scalar*c[j];

Function Rate (MB/s) Avgtime Min time Max time
Copy: 33237.0185 0.0050 0.0048 0.0055
Scale: 33304.6471 0.0049 0.0048 0.0059
Add: 35456.0586 0.0070 0.0068 0.0073
Triad: 36030.9600 0.0069 0.0067 0.0072

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
30

Amplifier XE ïCreate Project

Â Create a Project in the same way as with the inspector.

Â Executable should be build with optimization.

Â Use a reasonable sized data set.

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
31

Amplifier XE ïMeasurement Runs

1

2

2

1

Basic Analysis Types

Hardware Counter Analysis Types, choose Nehalem Architecture, on cluster-linux-tuning.

3

3 Analysis for Intel Xeon Phi coprocessors, choose this for OpenMP target programs.

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
32

Amplifier XE ïHotspot Analysis

1

2

3

1

2

3

Summary:

General Timing
Information

Top Hotspots

Platform Information

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
33

Amplifier XE ïHotspot Analysis

1

2

1

2

Function Summary

Timeline View

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
34

Amplifier XE ïHotspot Analysis

1

2

3

1

2

3

Source Code View (only if compiled with -g)

Hotspot: Add Operation of Stream

Metrics View

Double clicking on a function opens source code view.

Hotspots

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
35

Data Scoping

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
36

Â Managing the Data Environment is the challenge of OpenMP.

Â Scoping in OpenMP: Dividing variables in shared and private:

Ą private-list and shared-list on Parallel Region

Ą private-list and shared-list on Worksharing constructs

Ą General default is shared for Parallel Region, firstprivate for Tasks.

Ą Loop control variables on for-constructs are private

Ą Non-static variables local to Parallel Regions are private

Ą private: A new uninitialized instance is created for each thread

Ąfirstprivate: Initialization with Masterósvalue

Ąlastprivate: Value of last loop iteration is written back to Master

Ą Static variables are shared

Scoping Rules

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
37

Â Global / static variables can be privatized with the threadprivate

directive

Ą One instance is created for each thread

ĄBefore the first parallel region is encountered

ĄInstance exists until the program ends

ĄDoes not work (well) with nested Parallel Region

Ą Based on thread-local storage (TLS)

ĄTlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword

__thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$ omp threadprivate(i)

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
38

Â OpenMP barrier (implicit or explicit)

Ą Threads wait until all threads of the current Team have reached the barrier

The Barrier Construct

C/C++

#pragma omp barrier

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
39

Exercises 1, 2 and 4

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
40

Inspector: Detecting

Data Races

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
41

Race Condition

Â Data Race: the typical OpenMP programming error, when:

Ą two or more threads access the same memory location, and

Ą at least one of these accesses is a write, and

Ą the accesses are not protected by locks or critical regions, and

Ą the accesses are not synchronized, e.g. by a barrier.

Â Non-deterministic occurrence: e.g. the sequence of the execution of

parallel loop iterations is non-deterministic and may change from

run to run

Â In many cases private clauses, barriers or critical regions are

missing

Â Data races are hard to find using a traditional debugger

Ą Use the Intel Inspector XE

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
42

Intel Inspector XE

Â Detection of

Ą Memory Errors

Ą Dead Locks

Ą Data Races

Â Support for

Ą Linux (32bit and 64bit) and Windows (32bit and 64bit)

ĄWIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP

Â New Features (compared to Intel Thread Checker)

Ą Binary Instrumentation gives full functionality

Ą Independent stand-alone GUI for Windows and Linux

Ąmemory error detection

Ą static security analysis (in combination with the Intel 12.X compiler)

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
43

PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

“
τ

ρ ὼ

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
44

PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

What if we
would have

forgotten this?

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
45

Inspector XE ïCreate Project

$ module load intelixe; inspxe-gui

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
46

Inspector XE ïCreate Project

- ensure that multiple threads are used
- choose a real small dataset, execution time can grow 10X ς1000X

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
47

Inspector XE ïConfigure Analysis

Threading Error Analysis Modes
1. Detect Deadlocks
2. Detect Deadlocks and Data Races
3. Locate Deadlocks and Data Races

more details,
more overhead

