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Agenda of the OpenMP Part

Â WED

Ą 09:00h ï10:30h: Introduction to Parallel Programming with OpenMP I

Ą 11:00h ï12:30h: Introduction to Parallel Programming with OpenMP II

Ą 14:00h ï15:30h: Getting OpenMP up to Speed

Ą 16:00h ï17:30h: Advanced OpenMP Programming

Â WED evening: social event

Â THU

Ą 09:00h ï10:30h: Intel Xeon Phi Coprocessor

OpenMP for Accelerators

Ą 14:00h ï15:30h: Vectorization with OpenMP

Performance Analysis with LIKWID

Ą 16:00h ï17:30h: One (single) kernel for CPU, GPU and Xeon Phi
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Introduction
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History

Â De-facto standard for Shared-Memory Parallelization.

Â 1997: OpenMP 1.0 for FORTRAN

Â 1998: OpenMP 1.0 for C and C++

Â 1999: OpenMP 1.1 for FORTRAN

(errata)

Â 2000: OpenMP 2.0 for FORTRAN

Â 2002: OpenMP 2.0 for C and C++

Â 2005: OpenMP 2.5 now includes

both programming languages.

Â 05/2008: OpenMP 3.0 release

Â 07/2011: OpenMP 3.1 release

Â 07/2013: OpenMP 4.0 release

http://www.OpenMP.org

RWTHAachenUniversityis
a member of the OpenMP
Architecture Review Board
(ARB)since2006.
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Â CPU is fast

Ą Order of 3.0 GHz

Â Caches:

Ą Fast, but expensive

Ą Thus small, order of MB

Â Memory is slow

Ą Order of 0.3 GHz

Ą Large, order of GB

Â A good utilization of caches is

crucial for good performance of HPC applications!

Single Processor System (dying out)

core

memory

off-chipcache

on-chipcache
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Â There is a growing gap between core and memory performance:

Ą memory, since 1980: 1.07x per year improvement in latency

Ą single core: since 1980: 1.25x per year until 1986, 1.52x p. y. until 2000,

1.20x per year until 2005, then no change on a per-core basis

Ą Source: John L. Hennessy, Stanford University, and David A. Patterson, University of California, September 25, 2012 

Memory Bottleneck
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Â Because that beast would get too hot!

Fast clock cycles

make processor

chips more ex-

pensive, hotter

and more power

consuming.

Why is there no 4.0 GHz x86 CPU?
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The number of transistors

on a chip is still doubling

every 24 months é

é but the clock speed is no

longer increasing that fast!

Instead, we will see many

more cores per chip!

Source: Herb Sutter

www.gotw.ca/publications/concurrency-ddj.htm

MooreósLaw still holds!
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Â Since 2005/2006 Intel and AMD

are producing dual-core pro-

cessors for the mass market!

Â In 2006/2007 Intel and AMD

introduced quad-core

processors.

Â Ÿ Any recently bought PC or

laptop is a multi-core system

already!

Dual-Core Processor System

Core

memory

off-chipcache

Core

on-chipcache
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Â Dual-socket Intel Woodcrest

(dual-core) system

Ą Two cores per chip, 3.0 GHz

Ą Each chip has 4 MB of L2

cache on-chip, shared by

both cores

Ą No off-chip cache

Ą Bus: Frontsidebus

Â SMP: Symmetric Multi Processor

Ą Memory access time is

uniform on all cores

Ą Limited scalabilty

Example for a SMP system

Core

memory

Core

on-chipcache

Core Core

on-chipcacheon-chipcache

bus
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Â Memory can be accessed by several threads running on different 

cores in a multi-socket multi-core system:

Shared Memory Parallelization

a=4

CPU1 CPU2

a

c=3+a

Look for tasksthat canbe executed
simultaneously(taskparallelism)
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OpenMP Overview

&

Parallel Region

&

Basic Worksharing
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Â OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access

a shared main memory.

Real architectures are

more complex, as we

will see later / as we

have seen.

Parallelization in OpenMP

employs multiple threads.

OpenMPósmachine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus
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Â OpenMP programs start with

just one thread: The Master.

Â Worker threads are spawned

at Parallel Regions, together

with the Master they form the

Team of threads.

Â In between Parallel Regions the

Worker threads are put to sleep.

The OpenMP Runtime takes care

of all thread management work.

Â Concept: Fork-Join.

Â Allows for an incremental parallelization!

OpenMP Execution Model

Master Thread Serial Part

Parallel
RegionSlave 

ThreadsSlave 
ThreadsWorker
Threads

Parallel
Region

Serial Part
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Â The parallelism has to be expressed explicitly.

Â Structured Block

Ą Exactly one entry point at the top

Ą Exactly one exit point at the bottom

Ą Branching in or out is not allowed

Ą Terminating the program is allowed

(abort / exit)

Parallel Region and Structured 
Blocks

C/C++

#pragma omp parallel

{

...

structured block

...

}

Â Specification of number of threads:

} Environment variable: 

OMP_NUM_THREADS=é

} Or: Via num_threads clause:

add num_threads ( num) to the

parallel construct

Fortran

!$ omp parallel

...

structured block

...

$! omp end parallel
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Hello OpenMP World

Demo



Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
17

Hello orphaned OpenMP World

Demo
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Â From within a shell, global setting of the number of threads:

export OMP_NUM_THREADS=4

./ program

Â From within a shell, one-time setting of the number of threads:

OMP_NUM_THREADS=4   ./ program

Â Intel Compiler on Linux: ask the runtime for more information:

export KMP_AFFINITY=verbose

export OMP_NUM_THREADS=4

./ program

Starting OpenMP Programs on Linux
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For Construct
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Â If only the parallel construct is used, each thread executes the

Structured Block.

Â Program Speedup: Worksharing

Â OpenMPósmost common Worksharing construct: for

Ą Distribution of loop iterations over all threads in a Team.

Ą Scheduling of the distribution can be influenced.

Â Loops often account for most of a programósruntime!

For Worksharing

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

a[i] = b[i] + c[i];

}

Fortran

INTEGER :: i

!$ omp parallel do

DO i = 0, 99

a[i] = b[i] + c[i];

END DO
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Worksharing illustrated

do i = 0, 99

a(i) = b(i) + c(i)

end do

do i = 0, 24

a(i) = b(i) + c(i)

end do

do i = 25, 49

a(i) = b(i) + c(i)

end do

do i = 50, 74

a(i) = b(i) + c(i)

end do

do i = 75, 99

a(i) = b(i) + c(i)

end do

MemoryPseudo-Code
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)
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Vector Addition

Demo



Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
23

Â Can all loops be parallelized with for -constructs? No!

Ą Simple test: If the results differ when the code is executed backwards, the

loop iterations are not independent. BUT: This test alone is not sufficient:

Â Data Race: If between two synchronization points at least one thread

writes to a memory location from which at least one other thread

reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}
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Â A Critical Region is executed by all threads, but by only one thread

simultaneously (Mutual Exclusion).

Â Do you think this solution scales well?

Synchronization: Critical Region

C/C++

#pragma omp critical (name)

{

... structured block ...

}

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i ];  }

}
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#pragma omp parallel              

{

#pragma omp for

for (i = 0; i < 99; i++)

{   

s  = s   + a[i];

}

} // end parallel

Itósyour turn: Make It Scale!

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do
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Â In a reduction-operation the operator is applied to all variables in the
list. The variables have to be shared.

Ą reduction ( operator:list )

Ą The result is provided in the associated reduction variable

Ą Possible reduction operators with initialization value:

+ (0), * (1), - (0),

& (~0), | (0), && (1), || (0),

^ (0), min (least number ), max ( largest number )

The Reduction Clause

C/C++

#pragma omp parallel for reduction (+:s)

for (i = 0; i < 99; i++)

{

s = s + a[i];

}
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VTune: Detecting Hotspots
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VTune Amplifier XE

Â Performance Analyses for

Ą Serial Applications

Ą Shared Memory Parallel Applications

Â Sampling Based measurements

Â Features:

Ą Hot Spot Analysis

Ą Concurrency Analysis

ĄWait

Ą Hardware Performance Counter Support
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Stream

Â Standard Benchmark to measure memory performance.

Â Version is parallelized with OpenMP.

Measures Memory bandwidth for:

y=x (copy)

y=s*x (scale)

y=x+z (add)

y=x+s*z (triad)

for double vectors x,y,z and scalar double value s

#pragmaompparallel for
for (j=0; j<N; j++)

b[j] = scalar*c[j];

-------------------------------------------------------------
Function      Rate (MB/s)   Avgtime     Min time     Max time
Copy:       33237.0185       0.0050       0.0048       0.0055
Scale:      33304.6471       0.0049       0.0048       0.0059
Add:        35456.0586       0.0070       0.0068       0.0073
Triad:      36030.9600       0.0069       0.0067       0.0072
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Amplifier XE ïCreate Project

Â Create a Project in the same way as with the inspector.

Â Executable should be build with optimization.

Â Use a reasonable sized data set.
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Amplifier XE ïMeasurement Runs

1

2

2

1

Basic Analysis Types

Hardware Counter Analysis Types, choose Nehalem Architecture, on cluster-linux-tuning.

3

3 Analysis for Intel Xeon Phi coprocessors, choose this for OpenMP target programs.
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Amplifier XE ïHotspot Analysis

1

2

3

1

2

3

Summary:

General Timing 
Information

Top Hotspots

Platform Information
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Amplifier XE ïHotspot Analysis

1

2

1

2

Function Summary

Timeline View 
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Amplifier XE ïHotspot Analysis

1

2

3

1

2

3

Source Code View (only if compiled with -g)

Hotspot: Add Operation of Stream

Metrics View

Double clicking on a function opens source code view.

Hotspots
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Data Scoping



Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University
36

Â Managing the Data Environment is the challenge of OpenMP.

Â Scoping in OpenMP: Dividing variables in shared and private:

Ą private-list and shared-list on Parallel Region

Ą private-list and shared-list on Worksharing constructs

Ą General default is shared for Parallel Region, firstprivate for Tasks.

Ą Loop control variables on for-constructs are private

Ą Non-static variables local to Parallel Regions are private

Ą private: A new uninitialized instance is created for each thread

Ąfirstprivate: Initialization with Masterósvalue

Ąlastprivate: Value of last loop iteration is written back to Master

Ą Static variables are shared

Scoping Rules
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Â Global / static variables can be privatized with the threadprivate

directive

Ą One instance is created for each thread

ĄBefore the first parallel region is encountered

ĄInstance exists until the program ends

ĄDoes not work (well) with nested Parallel Region

Ą Based on thread-local storage (TLS)

ĄTlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword

__thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$ omp threadprivate(i)
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Â OpenMP barrier (implicit or explicit)

Ą Threads wait until all threads of the current Team have reached the barrier

The Barrier Construct

C/C++

#pragma omp barrier
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Exercises 1, 2 and 4
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Inspector: Detecting            

Data Races
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Race Condition

Â Data Race: the typical OpenMP programming error, when:

Ą two or more threads access the same memory location, and

Ą at least one of these accesses is a write, and

Ą the accesses are not protected by locks or critical regions, and

Ą the accesses are not synchronized, e.g. by a barrier.

Â Non-deterministic occurrence: e.g. the sequence of the execution of 

parallel loop iterations is non-deterministic and may change from 

run to run

Â In many cases private clauses, barriers or critical regions are 

missing

Â Data races are hard to find using a traditional debugger

Ą Use the Intel Inspector XE
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Intel Inspector XE

Â Detection of

Ą Memory Errors

Ą Dead Locks

Ą Data Races

Â Support for

Ą Linux (32bit and 64bit) and Windows (32bit and 64bit)

ĄWIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP

Â New Features (compared to Intel Thread Checker)

Ą Binary Instrumentation gives full functionality

Ą Independent stand-alone GUI for Windows and Linux

Ąmemory error detection

Ą static security analysis (in combination with the Intel 12.X compiler )
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PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

“
τ

ρ ὼ
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PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

What if we 
would have 

forgotten this?
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Inspector XE ïCreate Project

$ module load intelixe; inspxe-gui
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Inspector XE ïCreate Project

- ensure that multiple threads are used
- choose a real small dataset, execution time can grow 10X ς1000X 
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Inspector XE ïConfigure Analysis

Threading Error Analysis Modes
1. Detect Deadlocks
2. Detect Deadlocks and Data Races
3. Locate Deadlocks and Data Races

more details,
more overhead


