

Introduction to OpenMP

Christian Terboven <terboven@itc.rwth-aachen.de> Dirk Schmidl <schmidl@itc.rwth-aachen.de> 18.03.2015 / Aachen, Germany Stand: 12.03.2015 Version 2.3

IT Center der RWTH Aachen University

Agenda of the OpenMP Part

WED

- → 09:00h 10:30h: Introduction to Parallel Programming with OpenMP I
- → 11:00h 12:30h: Introduction to Parallel Programming with OpenMP II
- → 14:00h 15:30h: Getting OpenMP up to Speed
- → 16:00h 17:30h: Advanced OpenMP Programming

WED evening: social event

- THU
 - → 09:00h 10:30h: Intel Xeon Phi Coprocessor

OpenMP for Accelerators

→ 14:00h – 15:30h: Vectorization with OpenMP

Performance Analysis with LIKWID

→ 16:00h – 17:30h: One (single) kernel for CPU, GPU and Xeon Phi

Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University

Introduction

3

History

4

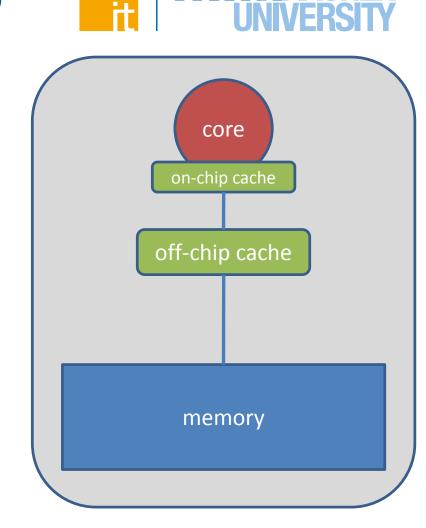
- De-facto standard for Shared-Memory Parallelization.
- 1997: OpenMP 1.0 for FORTRAN
- 1998: OpenMP 1.0 for C and C++
- 1999: OpenMP 1.1 for FORTRAN (errata)
- 2000: OpenMP 2.0 for FORTRAN
- 2002: OpenMP 2.0 for C and C++
- 2005: OpenMP 2.5 now includes both programming languages.
- 05/2008: OpenMP 3.0 release
 07/2011: OpenMP 3.1 release
 - 07/2013: OpenMP 4.0 release

Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University

RWTH Aachen University is a member of the OpenMP Architecture Review Board (ARB) since 2006.

Single Processor System (dying out)

CPU is fast


→ Order of 3.0 GHz

Caches:

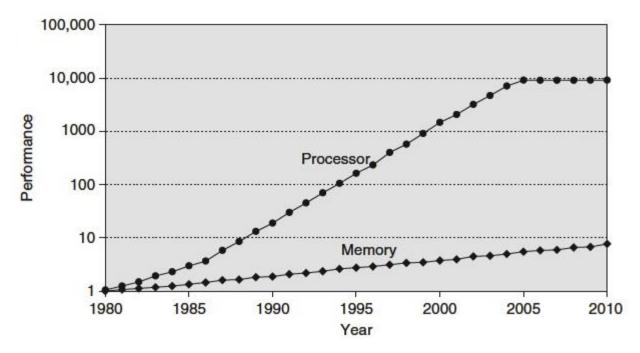
- → Fast, but expensive
- → Thus small, order of MB

Memory is slow

- → Order of 0.3 GHz
- → Large, order of GB

A good utilization of caches is crucial for good performance of HPC applications!

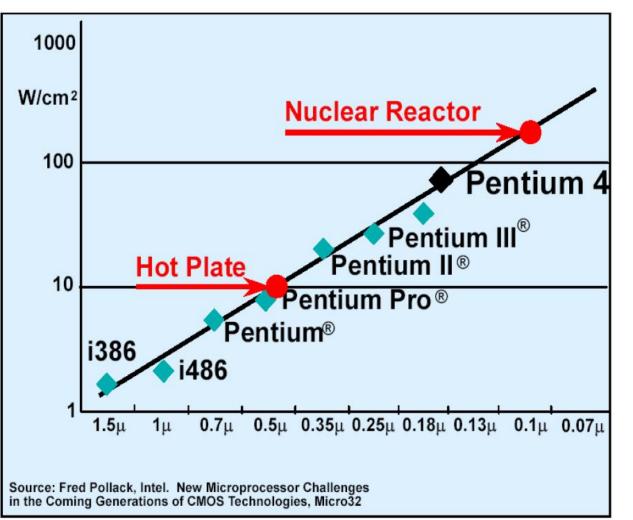
Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University


Memory Bottleneck

it **RNTHAACHEN** UNIVERSITY

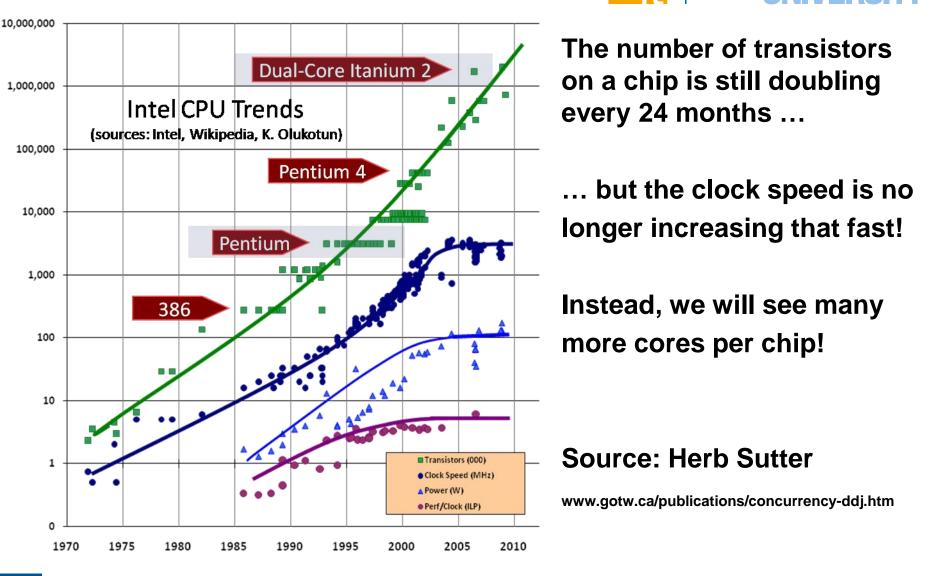
There is a growing gap between core and memory performance:

- → memory, since 1980: 1.07x per year improvement in latency
- \rightarrow single core: since 1980: 1.25x per year until 1986, 1.52x p. y. until 2000,


1.20x per year until 2005, then no change on a per-core basis

→ Source: John L. Hennessy, Stanford University, and David A. Patterson, University of California, September 25, 2012 Introduction to OpenMP

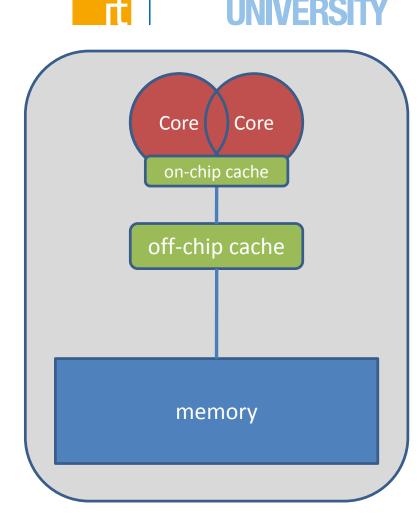
Why is there no 4.0 GHz x86 CPU?



Because that beast would get too hot!

Christian Terboven | IT Center der RWTH Aachen University

Fast clock cycles make processor chips more expensive, hotter and more power consuming.


Moore's Law still holds!

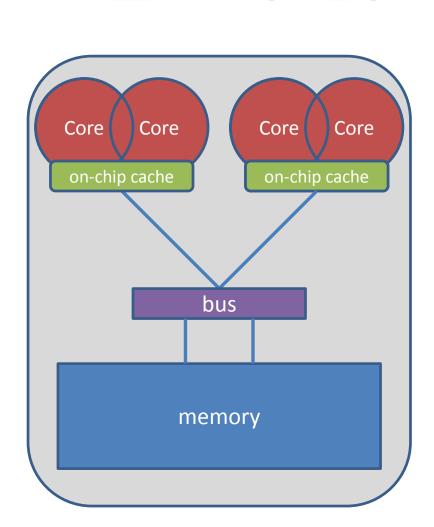
Introduction to OpenMP

Dual-Core Processor System

- Since 2005/2006 Intel and AMD are producing dual-core processors for the mass market!
- In 2006/2007 Intel and AMD introduced quad-core processors.
 - → Any recently bought PC or laptop is a multi-core system already!

9

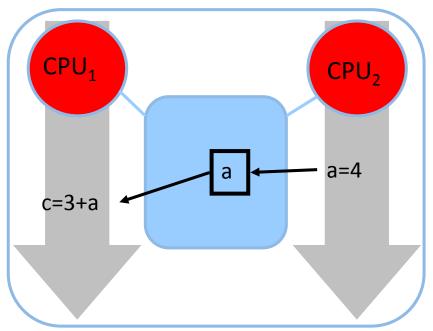
Example for a SMP system

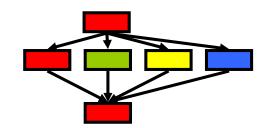

- Dual-socket Intel Woodcrest (dual-core) system
 - → Two cores per chip, 3.0 GHz
 - → Each chip has 4 MB of L2 cache on-chip, shared by both cores
 - → No off-chip cache
 - → Bus: Frontsidebus

SMP: Symmetric Multi Processor

- → Memory access time is
 - uniform on all cores
- → Limited scalabilty

10


Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University

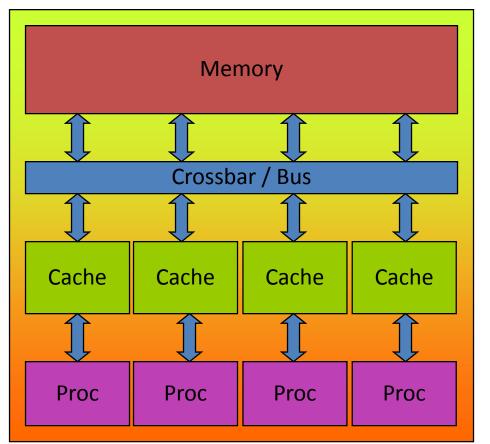


Shared Memory Parallelization

Memory can be accessed by several threads running on different cores in a multi-socket multi-core system:

Look for tasks that can be executed simultaneously (task parallelism)

OpenMP Overview 8 **Parallel Region** 8 **Basic Worksharing**


Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University

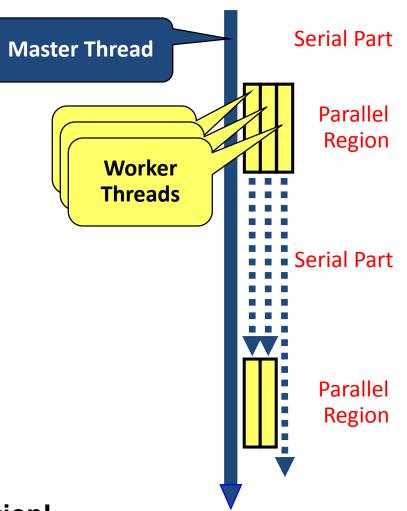
12

OpenMP's machine model

OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access a shared main memory.

Real architectures are more complex, as we will see later / as we have seen.


Parallelization in OpenMP employs multiple threads.

OpenMP Execution Model

- OpenMP programs start with just one thread: The *Master*.
 - Worker threads are spawned at Parallel Regions, together with the Master they form the Team of threads.
 - In between Parallel Regions the Worker threads are put to sleep. The OpenMP *Runtime* takes care of all thread management work.

Concept: Fork-Join.


Allows for an incremental parallelization!

Parallel Region and Structured Blocks

The parallelism has to be expressed explicitly.

Structured Block

- \rightarrow Exactly one entry point at the top
- \rightarrow Exactly one exit point at the bottom
- \rightarrow Branching in or out is not allowed
- Terminating the program is allowed (abort / exit)

Introduction to OpenMP

15

Christian Terboven | IT Center der RWTH Aachen University

Specification of number of threads:

Environment variable:

OMP_NUM_THREADS=...

 Or: Via num_threads clause:
 add num_threads (num) to the parallel construct

Hello OpenMP World

16 Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University Demo

Hello orphaned OpenMP World

17 Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University

Starting OpenMP Programs on Linux

From within a shell, global setting of the number of threads:

```
export OMP_NUM_THREADS=4
./program
```

From within a shell, one-time setting of the number of threads:

OMP_NUM_THREADS=4 ./program

Intel Compiler on Linux: ask the runtime for more information:

export KMP_AFFINITY=verbose
export OMP_NUM_THREADS=4
./program

For Construct

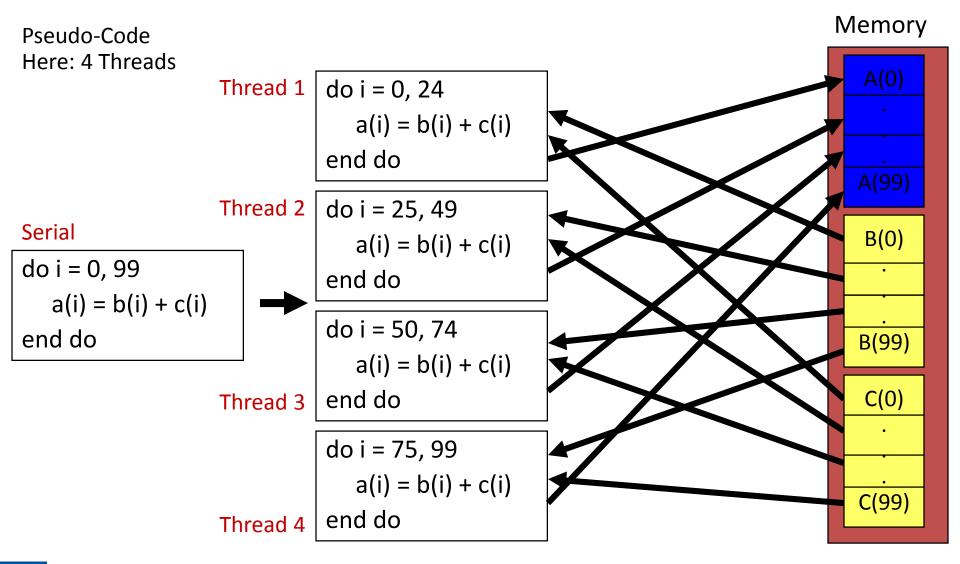
19 Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University

For Worksharing

- If only the *parallel* construct is used, each thread executes the Structured Block.
- Program Speedup: Worksharing
- OpenMP's most common Worksharing construct: for

```
Fortran
```

```
INTEGER :: i
!$omp parallel do
DO i = 0, 99
    a[i] = b[i] + c[i];
END DO
```


 \rightarrow Distribution of loop iterations over all threads in a Team.

 \rightarrow Scheduling of the distribution can be influenced.

Loops often account for most of a program's runtime!

Worksharing illustrated

Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University

21

Vector Addition

Synchronization Overview

Can all loops be parallelized with for-constructs? No!

→ Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent. BUT: This test alone is not sufficient:

```
C/C++
int i;
#pragma omp parallel for
for (i = 0; i < 100; i++)
{
    s = s + a[i];
}</pre>
```

Data Race: If between two synchronization points at least one thread writes to a memory location from which at least one other thread reads, the result is not deterministic (race condition).

23

Synchronization: Critical Region

A *Critical Region* is executed by all threads, but by only one thread simultaneously (*Mutual Exclusion*).

C/C++
<pre>#pragma omp critical (name)</pre>
{ structured block
}

Do you think this solution scales well?

```
C/C++
int i;
#pragma omp parallel for
for (i = 0; i < 100; i++)
{
#pragma omp critical
        { s = s + a[i]; }
}</pre>
```

It's your turn: Make It Scale! #pragma omp parallel do i = 0, 24 s = s + a(i){ end do #pragma omp for do i = 25, 49 for (i = 0; i < 99; i++) s = s + a(i)end do { do i = 0, 99 s = s + a(i)do i = 50, 74 end do s = s + a(i)s = s + a[i];end do

do i = 75, 99

end do

s = s + a(i)

25 Introduction to DenMi Parallel Christian Terboven | IT Center der RWTH Aachen University

}

The Reduction Clause

In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.

```
> reduction (operator:list)
```

 \rightarrow The result is provided in the associated reduction variable

```
C/C++
#pragma omp parallel for reduction(+:s)
for(i = 0; i < 99; i++)
{
    s = s + a[i];
}</pre>
```

 \rightarrow Possible reduction operators with initialization value:

26

VTune: Detecting Hotspots

Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University

VTune Amplifier XE

Performance Analyses for

- → Serial Applications
- → Shared Memory Parallel Applications
- Sampling Based measurementsFeatures:
 - → Hot Spot Analysis
 - → Concurrency Analysis
 - → Wait

28

→ Hardware Performance Counter Support

Stream

- Standard Benchmark to measure memory performance.
- Version is parallelized with OpenMP.

Measures Memory bandwidth for:

y=x (copy) y=s*x (scale) y=x+z (add) y=x+s*z (triad) #pragma omp parallel for for (j=0; j<N; j++) b[j] = scalar*c[j];

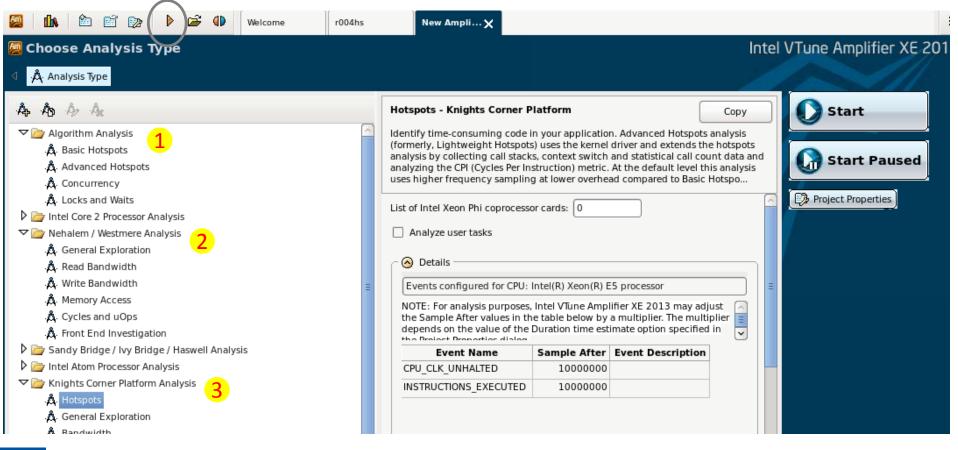
for double vectors x,y,z and scalar double value s

Function	Rate (MB/s)	Avg time	Min time	Max time
Сору:	33237.0185	0.0050	0.0048	0.0055
Scale:	33304.6471	0.0049	0.0048	0.0059
Add:	35456.0586	0.0070	0.0068	0.0073
Triad:	36030.9600	0.0069	0.0067	0.0072

Introduction to OpenMP

Amplifier XE – Create Project

Create a Project in the same way as with the inspector.
Executable should be build with optimization.
Use a reasonable sized data set.


	>	Project	Shift+Ctrl+N
Open Project Properties Close Project	Ctrl+P	Analysis Intel(R) Microarchitecture Code Name Nehalem - General Exploration Analysis Concurrency Analysis	Ctrl+N
Import Result	Ctrl+Alt+N	Hotspots Analysis	
Recent Projects Recent Results	>	011 project to proceed. Use any of the following options: ew > Project	
Options		n an existing project:	
E <u>x</u> it	Ctrl+Q		
File > Rece * Do one of the f project): File > Oper	ollowing to ope	n a previously collected result (which opens the corresponding	
	ent Results		

Introduction to OpenMP

Amplifier XE – Measurement Runs

- 1 Basic Analysis Types
- 2 Hardware Counter Analysis Types, choose Nehalem Architecture, on cluster-linux-tuning.
- 3 Analysis for Intel Xeon Phi coprocessors, choose this for OpenMP target programs.

31 Introduction to OpenMP

🖗 Analysis Target 🛛 🐴	Analysis Type 🖾 Collection Log 👸 Summary 🖧 Botton	n-up 💕 To
Elapsed Time:	1 2946	
Elapsed Time: Total Thread Count:		
CPU Time: ③	12 <u>1</u> 14.840s	
Paused Time: ③	0s	
Top Hotspots		
	st active functions in your application. Optimizing these hotspot fun	ctions typica
performance.		
Function	CPU Time [®] 2	
main	10.672s	
kmp_wait_sleep	2.438s	
kmp_x86_pause	1.100s	
kmp_execute_tasks	0.400s	
	0.120s	
kmp_yield		
kmp_yield [Others]	0.1105	
[Others]		
[Others]	0.1105 Platform Info 🖹	n platform d
[Others]	0.1105	2
Collection and This section provides in	0.1105 Platform Info formation about this collection, including result set size and collection /rwthfs/rz/cluster/home/ds534486/PPCES2012/stream/stream	2
Collection and This section provides in Command Line:	0.1105 Platform Info formation about this collection, including result set size and collection /rwthfs/rz/cluster/home/ds534486/PPCES2012/stream/stream	2
Collection and This section provides in Command Line: Environment Variables	0.1105 Platform Info formation about this collection, including result set size and collection /rwthfs/rz/cluster/home/ds534486/PPCES2012/stream/stream OMP_NUM_THREADS=12;	2
[Others] Collection and This section provides in Command Line: Environment Variables: Frequency: Logical CPU Count:	0.1105 Platform Info formation about this collection, including result set size and collection /rwthfs/rz/cluster/home/ds534486/PPCE52012/stream/stream OMP_NUM_THREADS=12; 3.07 GHz 3	2
[Others] Collection and This section provides in Command Line: Environment Variables: Frequency:	0.1105 Platform Info formation about this collection, including result set size and collection /rwthfs/rz/cluster/home/ds534486/PPCES2012/stream/stream OMP_NUM_THREADS=12; 3.07 GHz 24	2

Summary:

е н.

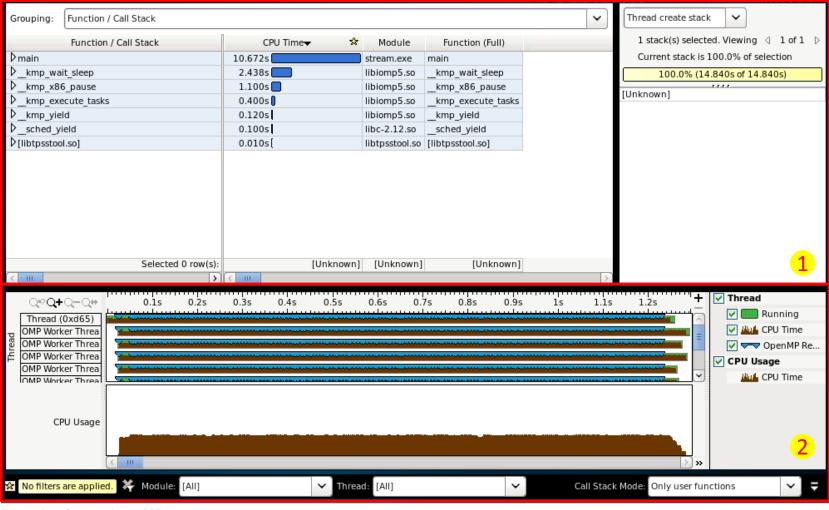
1 General Timing Information

2 Top Hotspots

3 Platform Information

Amplifier XE – Hotspot Analysis

בכ


Amplifier XE – Hotspot Analysis

1 Fi

Function Summary

Timeline View

Introduction to OpenMP

Amplifier XE – Hotspot Analysis

Double clicking on a function opens source code view.

- **1** Source Code View (only if compiled with -g)
 - 2 Hotspot: Add Operation of Stream
- 3 Metrics View

Sour	ce Assembly 🔝 🍜 🄝 🎝 🛛]
Line	Source	CPU Time 🛛 🛠	^	
238	#else			
239	#pragma omp parallel for	0.010s[
240	for (j=0; j⊲N; j++)	0.140s		
241	c[j] = a[j]+b[j]; 2	2.790s		-
242	#endif			
243	<pre>times[2][k] = mysecond() - times[2][k];</pre>			
244				
245	<pre>times[3][k] = mysecond();</pre>			
246	#ifdef TUNED		=	
247	<pre>tuned_STREAM_Triad(scalar);</pre>		=	
248	#else		_	Hotspots
249	#pragma omp parallel for			
250	for (j=0; j <n; j++)<="" td=""><td>0.160s</td><td></td><td></td></n;>	0.160s		
251	a[j] = b[j]+scalar*c[j];	2.751s		
252	#endif			
253	<pre>times[3][k] = mysecond() - times[3][k];</pre>	<mark>3</mark>		
254	}	_		
255	Selected 1 row(s):	2.790s	~	
(< <u> </u>	< <u>00</u> >		

34 Introduction to OpenMP

Data Scoping

35

Scoping Rules

• Managing the Data Environment is the challenge of OpenMP.

Scoping in OpenMP: Dividing variables in *shared* and *private*:

- → private-list and shared-list on Parallel Region
- → private-list and shared-list on Worksharing constructs
- → General default is *shared* for Parallel Region, *firstprivate* for Tasks.
- → Loop control variables on for-constructs are private
- \rightarrow Non-static variables local to Parallel Regions are *private*
- → private: A new uninitialized instance is created for each thread
 - \rightarrow *firstprivate*: Initialization with Master's value
 - → *lastprivate*: Value of last loop iteration is written back to Master

→ Static variables are shared

Privatization of Global/Static Variables

- Global / static variables can be privatized with the *threadprivate* ... or eated for each thread
 > Before the first parallel region is encountered read private additional of the program ends of th directive
 - \rightarrow One instance is created for each thread

- →Does not work (well) with nested
- → Based on thread-local ste
 - →TIsAlloc (Win32 ead_key_create (Posix-Threads), keyword

threadprivate(i)

Fortran

INTEGER :: SAVE !\$omp threadprivate(i)

C/C++

The Barrier Construct

OpenMP barrier (implicit or explicit)

→ Threads wait until all threads of the current *Team* have reached the barrier

C/C++

#pragma omp barrier

Exercises 1, 2 and 4

Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University

Inspector: Detecting Data Races

Introduction to OpenMP Christian Terboven | IT Center der RWTH Aachen University

Race Condition

Data Race: the typical OpenMP programming error, when:

- \rightarrow two or more threads access the same memory location, and
- \rightarrow at least one of these accesses is a write, and
- \rightarrow the accesses are not protected by locks or critical regions, and
- \rightarrow the accesses are not synchronized, e.g. by a barrier.
- Non-deterministic occurrence: e.g. the sequence of the execution of parallel loop iterations is non-deterministic and may change from run to run
- In many cases private clauses, barriers or critical regions are missing
- Data races are hard to find using a traditional debugger
 - → Use the Intel Inspector XE

Intel Inspector XE

Detection of

→ Memory Errors

→ Dead Locks

→ Data Races

Support for

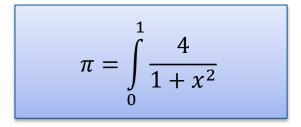
- → Linux (32bit and 64bit) and Windows (32bit and 64bit)
- → WIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP

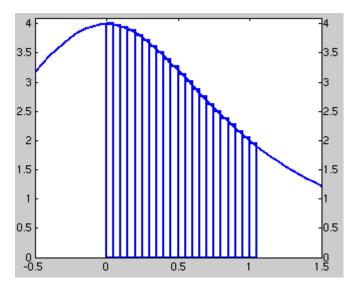
New Features (compared to Intel Thread Checker)

- → Binary Instrumentation gives full functionality
- → Independent stand-alone GUI for Windows and Linux
- → memory error detection
- → static security analysis (in combination with the Intel 12.X compiler)

PI Example Code

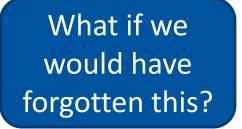
```
double f(double x)
{
    return (4.0 / (1.0 + x*x));
}
```


```
double CalcPi (int n)
```


{

```
const double fH = 1.0 / (double) n;
double fSum = 0.0;
double fX;
int i;
```

```
#pragma omp parallel for private(fX,i) reduction(+:fSum)
    for (i = 0; i < n; i++)
    {
        fX = fH * ((double)i + 0.5);
        fSum += f(fX);
    }
    return fH * fSum;
}</pre>
```



PI Example Code

```
double f(double x)
{
    return (4.0 / (1.0 + x*x));
}
double CalcPi (int n)
{
    const double fH = 1.0 / (double) n;
    double fSum = 0.0;
```

double fX;

```
int i;
```

```
#pragma omp parallel for private(fX,i) reduction(+:fSum)
    for (i = 0; i < n; i++)
    {
        fX = fH * ((double)i + 0.5);
        fSum += f(fX);
    }
    return fH * fSum;
}</pre>
```


Inspector XE – Create Project

\$ module load intelixe ; inspxe-gui

		<no current="" project=""> - Intel Inspector XE</no>	2011					
<u>F</u> ile Help								
New	▶ Proje	ct	Shift+Ctrl+N					
Open Project Properties Close Project	Ctrl+P Impo	ysis Result orted Result ading Error Analysis / Locate Deadlocks and Data Races	Ctrl+N Ctrl+Alt+N					
Recent Projects Recent Results	► Three	ading Error Analysis / Detect Deadlocks ading Error Analysis / Detect Deadlocks and Data Races						
Options E <u>x</u> it		oory Error Analysis / Detect Leaks						
File > Recent Projects * Do one of the following to open a previously collected result (which opens the corresponding project): File > Open > Result								
	cent Results							

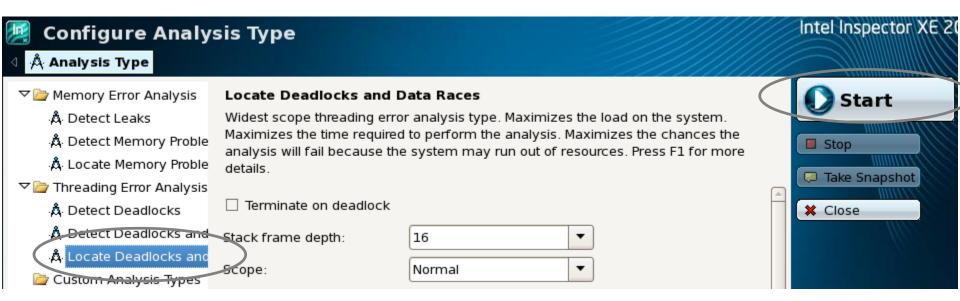
Inspector XE – Create Project

- ensure that multiple threads are used
- choose a real small dataset, execution time can grow 10X 1000X

Pi - Project Properties (on cluster.rz.RWTH-Aachen.DE)									
Target	Suppressions	Search Directories							
Launch Application									
Specify and configure application you want to analyze. Press F1 for more details.									
Applicatio	n: (/rwthfs/rz/na6280-3/home3/ds534486/PPCES2012/C-omp-pi/pi.exe	~	Browse					
Applicatio	on parameters:	< input	~	Modify					
Working d	lirectory:	/rwthfs/rz/na6280-3/home3/ds534486/PPCES2012/C-omp-pi	~	Browse					
✓ Inherit system environment variables									
User defin	ea environme nt	variables:		=					
OMP_NUM_THREADS=2; Modify									
Store result in the project directory: //home/ds534486/PPCES2012/C-omp-pi/Pi									
Store result in (and create link file to) another directory									
/home/ds534486/PPCES2012/C-omp-pi/Pi Browse									
Introduction to OpenMP									

Christian Terboven | IT Center der RWTH Aachen University

46


Inspector XE – Configure Analysis

Threading Error Analysis Modes

- 1. Detect Deadlocks
- 2. Detect Deadlocks and Data Races
- 3. Locate Deadlocks and Data Races

more details, more overhead

Introduction to OpenMP

47

2 filters

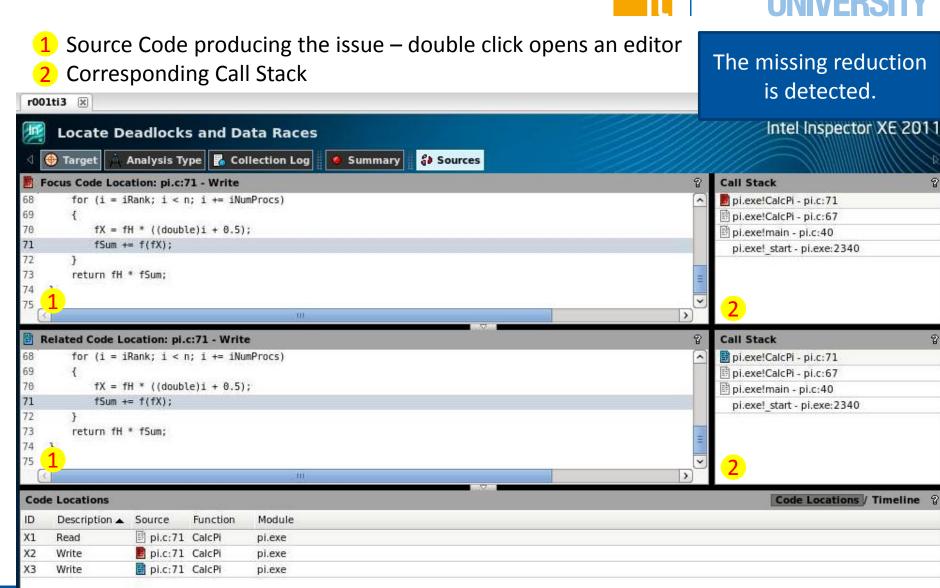
3 code location

r001ti3 🕱

Locate Deadlocks and Data Races	Intel In:	spector XE 201
🖶 🖶 Target 🙏 Analysis Type 🛃 Collection Log 🔮 🥥 Summary		
roblems	8 Filters	Sort 🗸 😚 🕯
D _< ® Problem Sources Modules State 1 O Data race pi.c pi.exe New	Severity Error	1 item(s)
	Problem Data race	1 item(s)
	Source pi.c	1 item(s
	Module pi.exe	1 item(s
	State New	1 item(s
Code Locations Code Locations / Timeline	Suppressed	1 item(s
Description Source Function Module	Investigated	1 item(s
7X1 Read pi.c:71 CalcPi pi.exe 69 {		1 dentis
X2 Write Image: pi.c:71 CalcPi pi.exe 69 {		
70 fX = fH * ((double)i + 0.5); 71 fSum += f(fX); 72 } 73 return fH * fSum; 3		2

1 Timeline view

r001	r001ti3 🕱												
Locate Deadlocks and Data Races								Intel Inspector XE 2011					
4	🕑 Target	👌 Analys	is Type 🛛 🛃	Collectio	n Log 🥤 🍳	Summary							
Prot	olems									ŝ	3	Filters	Sort 🗸 😚 💡
ID 🔺	۵	Problem	Sources	Modules	State							Severity	
P1	0	Data race	pi.c	pi.exe	New							Error	1 item(s)
												Problem	
												Data race	1 item(s)
												Source pi.c	1 item(s)
												Module	I ticin(3)
												pi.exe	1 item(s)
												State	
												New	1 item(s)
												Suppressed	
Time	eline								Locations /	Timeline	2	Not suppressed	1 item(s)
QK	Q+Q-Q	•	0.05%	0.1%	0.15%	0.2%	0.25%	0.3%	0.35%	0.4%	+	Investigated	
m	ain (16217			• • • • •		!	· · · · · · ·	<u> </u>		· · · · ·	~	Not investigated	1 item(s)
0	MP Worker			•			♦						
		× 111								1			


Introduction to OpenMP

1 Source Code producing the issue – double click opens an editor

2 Corresponding Call Stack

Locate Deadlocks and Data Races	Intel Inspector XE 20
🕀 Target 🙏 Analysis Type 🛃 Collection Log 🚺 🖉 Summary 👔 Sources	
Focus Code Location: pi.c:71 - Write	ହି Call Stack
<pre>for (i = iRank; i < n; i += iNumProcs) </pre>	DiexelCalcPi - pi.c:71
1 fX = fH * ((double)i + 0.5);	pi.exe!CalcPi - pi.c:67
fSum += f(fX);	in pi.exe!main - pi.c:40 pi.exe!_start - pi.exe:2340
}	pi.exer_start - pi.exe:2340
return fH * fSum;	
	<u> </u>
Related Code Location: pi.c:71 - Write	Call Stack
<pre>for (i = iRank; i < n; i += iNumProcs) </pre>	pi.exe!CalcPi - pi.c:71
{ fX = fH * ((double)i + 0.5);	🖹 pi.exe!CalcPi - pi.c:67
fSum += f(fX);	Di.exe!main - pi.c:40
}	pi.exe!_start - pi.exe:2340
return fH * fSum;	
	=
1	<u> </u>
ode Locations	Code Locations / Timeline
Description Source Function Module	
Read 🗄 pi.c:71 CalcPi pi.exe	
Write 📴 pi.c:71 CalcPi pi.exe	
Write 📓 pi.c:71 CalcPi pi.exe	

RNNELAA

Christian Terboven | IT Center der RWTH Aachen University

51

PI Example Code

```
double f(double x)
{
    return (4.0 / (1.0 + x*x));
}
double CalcPi (int n)
```

{

```
const double fH = 1.0 / (double) n;
double fSum = 0.0;
double fX;
int i;
```

```
#pragma omp parallel for private(fX,i,fSum)
    for (i = 0; i < n; i++)
    {
        fX = fH * ((double)i + 0.5);
        fSum += f(fX);
    }
    return fH * fSum;
}</pre>
```

What if we just made the variable private?

Inspector XE – Static Security Analysis

At runtime no Error is detected!

Compiling with the argument "-diag-enable sc-full" delivers:

Pro	blems							P	Filters	Sort 🗸 🛞 😵
ID	۹	Туре	Sources	ď	State	Weight 🔫	Category	_	Severity	
P1	8	Misuse of PRIVATE	pi.c		隆 New	100	Threading		Error	2 item(s)
	pi.c(73): error #12358: variable "fSum" used here was last assigned at (file:pi.c line:71) in a parallel region where it was marked PRIVATE at (file:pi.c line:67). PRIVATE variables have indeterminate value after leaving a parallel region; consider using LASTPRIVATE to copy out last value on exit								Type Misuse of PRIVATE Uninitialized PRIVATE	1 item(s) 1 item(s)
P2	8	Uninitialized PRIVATE	pi.c		훢 New	100	Initialization		Source	
	pi.c(71):	error #12361: PRIVAT	E variable "f	Sum" is	uninitializ	ed in region a	t (file:pi.c line:67).		pi.c	2 item(s)
									State New	2 item(s)
Cod	e Locat	ions: Misuse of PRI	/ATE					8	Suppressed	
	ription	Source	Function	Variab	le				Not suppressed	2 item(s)
	····		CalcPi	variau					Investigated	
	d memo 69	I I I I I I I I I I I I I I I I I I I	CalCFI			Ca	lcPi - pi.c:71	∎ E	Not investigated	2 item(s)
	70	fX = fH * ((d	ouble)i + 0	.5);		Cu Cu	ceri - priciri		Category	
	71	fSum += f(fX)	;						Initialization	1 item(s)
	72 73	} return fH * fSum;							Threading	1 item(s)
			CalcPi					1		
_	65	int i;	Caleri			Ca	lcPi - pi.c:67			
	66	,								
	<pre>67 #pragma omp parallel for private(fX,i,fSum)</pre>									
	68 69	for (i = 0; i < n {	; 1++)					~		

At compile-time this error can be found!

Introduction to OpenMP

53