RWTH

IT Center

Introduction to OpenMP

Christian Terboven <terboven@itc.rwth-aachen.de>
Dirk Schmidl <schmidl@itc.rwth-aachen.de>
18.03.2015 / Aachen, Germany
Stand: 12.03.2015
Version 2.3

IT Center der RWTH Aachen University

Agenda of the OpenMP Part RWTH

WED
A 09:00h T 10:30h: Introduction to Parallel Programming with OpenMP |

A 11:00h T 12:30h: Introduction to Parallel Programming with OpenMP I
A 14:00h T 15:30h: Getting OpenMP up to Speed

A 16:00h T 17:30h: Advanced OpenMP Programming

WED evening: social event
THU

A 09:00h T 10:30h: Intel Xeon Phi Coprocessor

OpenMP for Accelerators

A 14:00h T 15:30h: Vectorization with OpenMP
Performance Analysis with LIKWID

A 16:00h T 17:30h: One (single) kernel for CPU, GPU and Xeon Phi

2 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

RWTH

Introduction

3 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

History

‘R\Nﬂ'l

De-facto standard for Shared-Memory Parallelization.

1997: OpenMP 1.0 for FORTRAN
1998: OpenMP 1.0 for C and C++

1999: OpenMP 1.1 for FORTRAN
(errata)

2000: OpenMP 2.0 for FORTRAN
2002: OpenMP 2.0 for C and C++

2005: OpenMP 2.5 now includes
both programming languages.

05/2008: OpenMP 3.0 release
07/2011: OpenMP 3.1 release

07/2013: OpenMP 4.0 release

Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

OpenMP

http://www.OpenMP.org

RWTHAachenUniversityis
a member of the OpenMP
Architecture Review Board
(ARBXIince2006

Single Processor System (dying out)

B
|
/. CPU is fast /

A Order of 3.0 GHz

~

/. Caches: on-chipcache

A Fast, but expensive _
off-chipcache

A Thus small, order of MB

A Memory is slow

A Order of 0.3 GHz

memory
A Large, order of GB

/A A good utilization of caches is
crucial for good performance of HPC applications!

5 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Memory Bottleneck RWTH

There is a growing gap between core and memory performance:
A memory, since 1980: 1.07x per year improvement in latency
A single core: since 1980: 1.25x per year until 1986, 1.52x p. y. until 2000,

1.20x per year until 2005, then no change on a per-core basis

100,000

110, 000 D ;

1010 T

Performance

100_ ..

10._ ... e

1995 2000 2005 2010

Year

1980 1985 1990

A Source: John L. Hennessy, Stanford University, and David A. Patterson, University of California, September 25, 2012

Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Why is there no 4.0 GHz x86 CPU?

Because that beast would get too hot!

1000

W/cm?2
Nuclear Reactor

100

. ®
Pentium lll
entium lI®

o Hot Plate

entium Pro®
Pentium®

© 1486

1 1

Source: Fred Pollack, Intel. New Microprocessor Challenges
in the Coming Generations of CMOS Technologies, Micro32

150 1p 0.7p 0.5p 0.35p 0.25p 0.18p 0.13pn 0.1p 0.07p

h Christian Terboven | IT Center der RWTH Aachen University

RWTH

Fast clock cycles
make processor
chips more ex-
pensive, hotter
and more power
consuming.

Mo or éawsstill holds!

10,000,000
Dual-Core Itanium 2 o /
1,000,000
- ‘ |] u
Intel CPU ‘Trends {
(sources: Intel, Wikipedia, K. Olukotun} -
100,000
m/_{
10,000
1,000
100
10
1 4 m Transistors (000)
o @ Clock Speed (MHz)
® L] @
X) APower (W)
@ Perf/Clock (ILP)
0 [\
1970 1975 1980 1985 1990 1995 2000 2005 2010

Introduction to OpenMP

Christian Terboven | IT Center der RWTH Aachen University

‘R“m'l

The number of transistors
on a chip is still doubling
every 24 months é

Vd

é b the clock speedis no
longer increasing that fast!

Instead, we will see many

more cores per chip!

Source: Herb Sutter

www.gotw.ca/publications/concurrency-ddj.htm

Dual-Core Processor System

A Since 2005/2006 Intel and AMD
are producing dual-core pro-

cessors for the mass market! Core Core

on-chipcache

A In 2006/2007 Intel and AMD
iIntroduced quad-core off-chipcache
processors.

A'Y Any recently boug
laptop is a multi-core system
already! memory

Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Example for a SMP system

/A Dual-socket Intel Woodcrest
(dual-core) system

A Two cores per chip, 3.0 GHz Core Core Core Core

A Each chip has 4 MB of L2 on-chipcache on-chipcache
cache on-chip, shared by

both cores
A No off-chip cache

A Bus: Frontsidebus

A SMP: Symmetric Multi Processor memory

A Memory access time is

uniform on all cores

A Limited scalabilty

10 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Shared Memory Parallelization RWTH

Memory can be accessed by several threads running on different
cores in a multi-socket multi-core system:

/54__ a=4
c=3+a

Lookfor tasksthat canbe executed
simultaneouslytaskparallelisn)

11 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

‘R“m'l

OpenMP Overview
&
Parallel Region

&
Basic Worksharing

Introduction to OpenMP

Op e n Mihachine model

/A OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we
have seen.

Parallelization in OpenMP
employs multiple threads.

13 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

OpenMP Execution Model RWTH

OpenMP programs start with

just one thread: The Master. Master Thread Serial Part
Parallel
Worker threads are spawned Region
at Parallel Regions, together Worker 11
with the Master they form the Threads "us
Team of threads. -
E E E Serial Part
In between Parallel Regions the
Worker threads are put to sleep. \A L
The OpenMP Runtime takes care
of all thread management work. : Parallel
= Region
v

Concept: Fork-Join.
Allows for an incremental parallelization!

14 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Parallel Region and Structured RWNTH
Blocks

The parallelism has to be expressed explicitly.

C/C++ Fortran
#pragma omp parallel I$ omp parallel
{

structured block

structured block

$! omp end parallel

}
Structured Block Specification of number of threads:

A Exactly one entry point at the top } Environment variable:

A Exactly one exit point at the bottom OMP_NUM_THREADS-=

A Branching in or out is not allowed } Or:Vianum_threads clause:

A Terminating the program is allowed add num_threads (num) to the

(abort / exit) parallel construct

15 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Demo Rm

Hello OpenMP World

16 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Demo ‘ Rm

Hello orphaned OpenMP World

17 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Starting OpenMP Programs on Linux RWTH

From within a shell, global setting of the number of threads:

export OMP_NUM_THREADS=4
[/ program

From within a shell, one-time setting of the number of threads:
OMP_NUM_THREADS=4 ./program

Intel Compiler on Linux: ask the runtime for more information:

export KMP_AFFINITY=verbose
export OMP_NUM_THREADS=4
[/ program

18 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

RWTH

For Construct

19 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

For Worksharing

RWTH

If only the parallel construct is used, each thread executes the

Structured Block.

Program Speedup: Worksharing

Op e n Mot common Worksharing construct: for

C/IC++
int
#pragma omp parallel
for (i=0;i<100; i++)
{

}

afi] = b[i] + cfi];

for

Fortran

INTEGER :: |
I$ omp parallel do
DOi = 0,99

a[i] = b[i] + c]i[;
END DO

A Distribution of loop iterations over all threads in a Team.

A Scheduling of the distribution can be influenced.

Loops often account for mostofap r o g r aumtorse!

20 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Worksharing illustrated

PseudeCode
Here: 4 Threads

Thread 1/ doi=0, 24

a() =b() +cl)
end do
Thread 2 do i = 25, 49
Serial : . .
a(i) =b(i) + c(i)
doi= O, 99 end do
a(i) = b(i) + c(i) | =
end do doi= 50, 74

a(i) = b(i) + c(i)
Thread 3/ end do
doi=75, 99

a(i) = b(i) + c(i)
Thread 4| end do

21 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Demo Rm

Vector Addition

22 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

RWTH

Synchronization Overview

Can all loops be parallelized with for -constructs? No!

A Simple test: If the results differ when the code is executed backwards, the
loop iterations are not independent. BUT: This test alone is not sufficient:

C/C++

int I

#pragma omp parallel for
for (i=0;i<100; i++)

{

}

s=s+ali;

Data Race: If between two synchronization points at least one thread
writes to a memory location from which at least one other thread
reads, the result is not deterministic (race condition).

23 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

RWTH

Synchronization: Critical Region

A Critical Region is executed by all threads, but by only one thread
simultaneously (Mutual Exclusion).

C/C++

#pragma omp critical (name)

{
}

... Structured block ...

Do you think this solution scales well?

C/C++

int I

#pragma omp parallel for
for (i=0;i<100; i++)

{

#pragma omp critical
{ s=s+ali [}

}

24 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

| t ybsr turn: Make It Scale!

#pragma omp parallel

{

#pragma omp for
for (i=0;i1<99;i++)
{

s =s +all;

[end.Raralighve

Christian Terboven | IT Center der RWTH Aachen University

RWTH

doi=0, 24
s=s +a()
end do

doi=0, 99
S=s+ &

doi=25, 49
s=s ()
end do

doi=50, 74
s =s ()
end do

doi=75, 99
s =s 4()
end do

RWTH

The Reduction Clause

In areduction-operation the operator is applied to all variables in the
list. The variables have to be shared.

A reduction (operator:list)

A The result is provided in the associated reduction variable

C/C++
#pragma omp parallel for reduction (+:9)
for (i=0;i1<99;i++)
{
s=s+ali;
}
A Possible reduction operators with initialization value:
+(0), * (1), - (0),
& (~0), | (0), && (1), || (0),
A (0), min (least number), max (largest number)

26 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

‘R“m'l

VTune: Detecting Hotspots

yydl ntro duction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

VTune Amplifier XE RWTH

Performance Analyses for

A Serial Applications

A Shared Memory Parallel Applications

Sampling Based measurements
Features:

A Hot Spot Analysis
A Concurrency Analysis
A Wait

A Hardware Performance Counter Support

28 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Stream

RWTH

Standard Benchmark to measure memory performance.

Version is parallelized with OpenMP.

Measures Memory bandwidth for:
y=x (copy)
y=s*x (scale)
y=x+z (add)
y=x+s*z (triad)

#pragmaomp parallelfor
for (j=0; J<Nj++)
b[j] =scalarc|j];

for double vectors x,y,z and scalar double value s

Function Rate (MB/spvgtime Mintime Max timg
Copy: 33237.0185 0.0050 0.0048 0.005p
Scale: 33304.6471 0.0049 0.0048 0.0059
Add: 35456.0586 0.0070 0.0068 0.007:
Triad: 36030.9600 0.0069 0.00603.0072

Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Amplifier XE'i Create Project ‘ RWTH

Create a Project in the same way as with the inspector.
Executable should be build with optimization.
Use areasonable sized data set.

" <no current project> - Intel VTune Amplifier XE 2011 (on cluster-linux-tuning.rz.RV,
|View Help
Project... Shift+Ctrl+N
Open >

Recent Projects >
Recent Results

Options...

& Exit

Ctrl+Q

-- File > Recent Projects

* Do one of the following to open a previously collected result (which opens the corresponding
project):

-- File > Open > Result...
-- File > Recent Results

Alternatively, you can compare results: File > Open > Compare Results

30 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Amplifier XE T Measurement Runs

1 Basic Analysis Types

RWTH

2 Hardware Counter Analysis Types, choose Nehalem Architecture, on dinstetuning.

3 Analysis for Intel Xeon Phi coprocessors, choose this for OpenMP target programs.

@ Choose Analysis Type

& /B

| F Algorithm Analysis 1
A Basic Hotspots
A Advanced Hotspots
A Concurrency
A Locks and Waits
[» | Intel Core 2 Processor Analysis
= | Nehalem [Westmere Analysis 2
A General Exploration
A Read Bandwidth
A Write Bandwidth
A Memory Access
A Cycles and uOps
A Front End Investigation
[* (= sandy Bridge / vy Bridge / Haswell Analysis
[+ |=F Intel Atom Processor Analysis
~ | ¥ Knights Corner Platform Analysis 3
.Iﬁ'." otspots |
A General Exploration

A Bandwidth

New Ampli... %

Intel VTune Amplifier XE 201

Hotspots - Knights Corner Platform | Copy |

|dentify time-consuming code in your application. Advanced Hotspots analysis
{formerly, Lightweight Hotspots) uses the kernel driver and extends the hotspots
analysis by collecting call stacks, context switch and statistical call count data and
analyzing the CPl (Cycles Per Instruction) metric. At the default level this analysis
uses higher frequency sampling at lower overhead compared to Basic Hotspo...

Project Propertiﬁ
—_

List of Intel Xeon Phi coprocessor cards: |D =

[] Analyze user tasks

(=) Details

[Events configured for CPU: Intel(R) Xeon(R) E5 processor

the Sample After values in the table below by a multiplier. The multiplier
depends on the value of the Duration time estimate option specified in

Fhm Mrmimet Meae mrekime Aislae

NOTE: For analysis purposes, Intel Vune Amplifier XE 2013 may adjust ﬁ

Event Name Sample After Event Description
CPU_CLKE _UNHALTED 10000000 1
INSTRUCTIONS_EXECUTED 10000000

31 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Amplifier XET Hotspot Analysis RWTH

@ Hotspots - Hotspots /# @

] Summary:
ng Analysis Target‘ : Analysis Type] }E Collection Log‘ f-'. Bottom-up j-'.. Top-d«

@) Elapsed Time:” 1.294s 1 General _Tlmlng
Total Thread Count: 12 I nfOI’m at|0n

CPU Time: 2 14.840s
Paused Time: 2 0s

2 Top Hotspots

Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically ref
performance,

Function CPU Time(2

main 10,6725 3 Platform Information
__kmp_wait_sleep 2.438s
__kmp_x86_pause 1.100s
__kmp_execute_tasks 0.400s
__kmp_yield 0.120s

Collection and Platform Info

This section provides information about this collection, including result set size and collection platform data.
Command Line: frwthfs/rz/cluster/home/ds534486/PPCES2012/stream/stream.exe
Environment Variables: OMP_NUM THREADS=12;

Frequency: 3.07 GHz 3

Logical CPU Count: 24

Operating System: Linux

Computer Name: cluster-linux-tuning.rz.RWTH-Aachen.DE

Result Size: 71 KB

Christian Terboven | IT Center der RWTH Aachen University

Amplifier XET Hotspot Analysis RWTH
1 Function Summary
2 Timeline View

Grouping: [Functinn! Call Stack lThread create stack ‘ W |

Function / Call Stack CPU Timew i Module Function (Full) 1 stack(s) selected. Viewing <] 1ofl [
[* main 10.672s (N stream.exe main Current stack is 100.0% of selection
D’_kmp_wait_sleep 2.438s libiomp5.s0 _ kmp_wait_sleep | 100.0% (14.840s of 14.8405)
D_kmp_xBS_pause 1.100s [libiomp5.so0 _ kmp_x86_pause Leee
P kmp_execute tasks 0.400s(libiomp5.so _ kmp_execute tasks [Unknown]
D_kmp_yield 0.120s| libiomp5.so0 _ kmp_yield
D’_sched_}rield 0.100s| libc-2.1250 _ sched yield
D‘[Iibtpsstonl.sn] 0.010s(libtpsstool.so [libtpsstool.so]

Selected 0 row(s): [Unknown] [Unknown] [Unknown]

T e (T 0.1s 0.2s 0.3s 0.4s 0.55 0.6s 0.7s 0.8s 0.9s 1s 1.1s 1.2s Thread
Thread (0xd65)] @ Running
(OMP Worker Threa Lk CPU Time
(OMP Worker Threa [#] =% DpenMP Re...

(OMP Worker Threa
v | CPU Usa
(OMP Worker Threa 9

MMP Winrker Threa Uk CPU Time

CPU Usage

33 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Amplifier XE T Hotspot Analysis

RWTH

Double clicking on a function opens source code view.

1 Source Code View (only if compiled witf)

2 Hotspot: Add Operation of Stream

3 Metrics View

Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

|. Source || Assembly | o El
Line Source
238 #else
23% #pragma omp parallel for
246 for (j=0: j=N; j++)
242 #endif 2
243 times[2][k] = mysecond() - times[2][k]:
244
245 times[3][k] = mysecond();
246 #ifdef TUNED
247 tuned STREAM Triad(scalar);
248 #else
249 #pragma omp parallel for
258 for (j=0; j=N; j++)
251 alj] = b[jl+scalar*c[i]:
252 #endif
253 times[3][k] = mysecond() - times[3][k];
254 }

CPU Time 7 [~

0.010s(

0.140s0
...

L]

0.160s [0

2.751s I
Selected 1 row(s):

Hotspots

RWTH

Data Scoping

35 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Scoping Rules RWTH

Managing the Data Environment is the challenge of OpenMP.

Scoping in OpenMP: Dividing variables in shared and private:

A private-list and shared-list on Parallel Region
A private-list and shared-list on Worksharing constructs
A General default is shared for Parallel Region, firstprivate for Tasks.
A Loop control variables on for-constructs are private
A Non-static variables local to Parallel Regions are private
A private: A new uninitialized instance is created for each thread
A firstprivate: Initialization with Ma s t galué s
A lastprivate: Value of last loop iteration is written back to Master

A Static variables are shared

36 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Privatization of Global/Static Variables ‘ RWNTH

Global / static variables can be privatized with the threadprivate
directive 3\.
_ | &
A One instance is created for each thread 6Q
A Before the first parallel region is encounter%k(ea

A Instance exists until the program endso,‘
A Does not work (well) with ne%eﬁ)éaralle@x%mn
\
A Based on thread-local stor@g%LS)Qﬁ(
A TIsAlloc (WlnBZQAreadQ@‘}read key create (Posix-Threads), keyword
Riuad?
thr%{‘ NU@ nsion)
°
C/C++\\\\ Fortran

s@e int i SAVE INTEGER :: i
hreadprivate(i) I$ omp threadprivate(i)

37 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

The Barrier Construct RWTH

OpenMP barrier (implicit or explicit)

A Threads wait until all threads of the current Team have reached the barrier
C/IC++

#pragma omp barrier

38 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

RWTH

Exercises 1, 2 and 4

39 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

‘R“m'l

Inspector: Detecting
Data Races

Introduction to OpenMP

Race Condition RWTH

Data Race: the typical OpenMP programming error, when:

A two or more threads access the same memory location, and
A at least one of these accesses is a write, and
A the accesses are not protected by locks or critical regions, and

A the accesses are not synchronized, e.g. by a batrrier.

Non-deterministic occurrence: e.g. the sequence of the execution of
parallel loop iterations is non-deterministic and may change from
run to run

In many cases private clauses, barriers or critical regions are
missing
Data races are hard to find using a traditional debugger

A Use the Intel Inspector XE

41 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Intel Inspector XE RWTH

Detection of

A Memory Errors
A Dead Locks

A Data Races

Support for
A Linux (32bit and 64bit) and Windows (32bit and 64bit)

A WIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP
New Features (compared to Intel Thread Checker)

A Binary Instrumentation gives full functionality
A Independent stand-alone GUI for Windows and Linux
A memory error detection

A static security analysis (in combination with the Intel 12.X compiler)

42 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Pl Example Code

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const doublefH =1.0/(double) n;
double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for 1=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

43 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

4F —y 14
.."'u.
ast N, {35
3,
3t 13
25t {25
2t L i
15} \'1.5
1} 41
ost {os
0 0
05 05 15

Pl Example Code RWTH

double f(double x)

{
return (4.0 / (1.0 + x*x));
}
double CalcPi (int n)
{
const double fH =1.0/(double) n; What if we
double fSum = 0.0;
double fX; would have

inti;

forgotten this?

#pragma omp parallel for private(fX,i) reduetion{+fSum)
for (I=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);

}

return fH * fSum;

}

44 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

Inspector XE 1 Create Project RWTH

$ module loadntelixe ; inspxegui

=no current project> - Intel Inspector XE 2011

Recent Projects

Recent Results

Options...

g to open an existing project:
i Exit Ctrl+Q

-- File > Open > Project...

-- File > Recent Projects

* Do one of the following to open a previously collected result (which opens
the corresponding project):

-- File = Open > Resulit...

-- File > Recent Results

Tip: Create or open a project if you plan to run a memory error or threading
error analysis. Open a result if you plan to visualize the result of a static
security analysis.

E Christian Terboven | IT Center der RWTH Aachen University

Inspector XE 1 Create Project

- ensure that multiple threads are used

- choose a real small dataset, execution time can growc]IX)OOX
| - P'l - Prtuect Properties (on cluster.rz. RWTH-Aachen DE) :

J Target l Suppressions] Search Directories]

o Launch Application
Specify and configure application you want to analyze. Press F1 for more details.

Application: [.Fnr.'thf"sflzfnaﬁzﬂD-3fhnme3fd55344BEIPPCESZDlsz-{:mp-pi.Fpi.exe vl [Browse... l
' Application parameters: [{ input e l [Modify... l
1

Working directory: [.Fnuthf*sflzfnaﬁEBD-3fhnme3fd55344BEIPPCE52I312.FC-{:mp-pi v l [Browse... l

Inherit system environment variables

U ighles:

W_‘I‘H READS=2; D)]
_——

(@ Store result in the project directory: [fhnmefdsE344BEIPPCESEGIEIC—Dmp-pifPi l

() Store result in (and create link file to) ancther directory

[home/ds5 34486/PPCES2012/C-omp-pifPi ||' Browse... |

46 OUU U O UpPC [~
Christian Terboven | IT Center der RWTH Aachen University

Inspector XE T Configure Analysis

Threading Error Analysis Modes

1. Detect Deadlocks

2. Detect Deadlocks and Data Race
3. Locate Deadlocks and Data Race

O

47 Introduction to OpenMP
Christian Terboven | IT Center der RWTH Aachen University

RWTH

more detalls,
more overhead

-

—

