
8	

Ruud	van	der	Pas	
Dis.nguished	Engineer	

Architecture	and	Performance	
SPARC	Microelectronics,	Oracle	

Santa	Clara,	CA,	USA	

“OpenMP Does Not Scale”

9	

Agenda	
n The Myth
n Deep Trouble
n Get Real
n The Wrapping

10	

The	Myth	

11	

“A myth, in popular use, is something
that is widely believed but false.”

(source: www.reference.com)

12	

“OpenMP	Does	Not	Scale”	

A	Common	Myth	

A	Programming	Model	Can	Not	“Not	Scale”	

What	Can	Not	Scale:	

The	ImplementaDon	
The	System	Versus	The	Resource	Requirements	

Or	You	

13	13	

Hmmm	What	Does	That	Really	
Mean	?	

14	

Some	Ques.ons	I	Could	Ask	
“Do	you	mean	you	wrote	a	parallel	program,	using	OpenMP	and	it	
doesn't	perform?”		
“I	see.	Did	you	make	sure	the	program	was	fairly	well	opDmized	in	
sequenDal	mode?”		

15	

Some	Ques.ons	I	Could	Ask	

“Oh.	You	just	think	it	should	and	you	used	all	the	cores.	Have	you	
esDmated	the	speed	up	using	Amdahl's	Law?”		

“Oh.	You	didn't.	By	the	way,	why	do	you	expect	the	program	to	
scale?”	

“No,	this	law	is	not	a	new	EU	financial	bail	out	plan.	It	is	something	
else.”	

16	

Some	Ques.ons	I	Could	Ask	
“I	understand.	You	can't	know	everything.	Have	you	at	least	used	a	
tool	to	idenDfy	the	most	Dme	consuming	parts	in	your	program?”		

“Oh.	You	didn't.	Did	you	minimize	the	number	of	parallel	regions	
then?”		

“Oh.	You	didn't.	It	just	worked	fine	the	way	it	was.	

“Oh.	You	didn't.	You	just	parallelized	all	loops	in	the	program.	Did	
you	try	to	avoid	parallelizing	innermost	loops	in	a	loop	nest?”		

17	

More	Ques.ons	I	Could	Ask	
“Did	you	at	least	use	the	nowait	clause	to	minimize	the	use	of	
barriers?”		
“Oh.	You've	never	heard	of	a	barrier.	Might	be	worth	to	read	up	
on.”	
“Do	all	threads	roughly	perform	the	same	amount	of	work?”	

“You	don't	know,	but	think	it	is	okay.	I	hope	you're	right.”	

18	

I	Don’t	Give	Up	That	Easily	
“Did	you	make	opDmal	use	of	private	data,	or	did	you	share	most	of	
it?”		
“Oh.	You	didn't.	Sharing	is	just	easier.	I	see.	

19	

I	Don’t	Give	Up	That	Easily	

“You've	never	heard	of	that	either.	How	unfortunate.	Could	there	
perhaps	be	any	false	sharing	affecDng	performance?”		
“Oh.	Never	heard	of	that	either.	May	come	handy	to	learn	a	liYle	
more	about	both.”		

“You	seem	to	be	using	a	cc-NUMA	system.	Did	you	take	that	into	
account?”		

20	

The	Grass	Is	Always	Greener	...	
“So,	what	did	you	do	next	to	address	the	performance	?”		

“Switched	to	MPI.	I	see.	Does	that	perform	any	beYer	then?”		

“Oh. You don't know. You're still debugging the code.”

21	

Going	Into	Pedan.c	Mode	

“While	you're	waiDng	for	your	MPI	debug	run	to	finish	
(are	you	sure	it	doesn't	hang	by	the	way	?),	please	allow	
me	to	talk	a	liYle	more	about	OpenMP	and	Performance.”	

22	

Deep	Trouble	

23	

n The transparency and ease of use of OpenMP are a
mixed blessing

à Makes things pretty easy

à May mask performance bottlenecks

n In the ideal world, an OpenMP application “just
performs well”

n Unfortunately, this is not always the case

OpenMP	And	Performance/1	

24	

n Two of the more obscure things that can negatively
impact performance are cc-NUMA effects and False
Sharing

n Neither of these are restricted to OpenMP

à They come with shared memory programming on modern

cache based systems

à But they might show up because you used OpenMP

à In any case they are important enough to cover here

OpenMP	And	Performance/2	

25	25	

ConsideraDons	for	cc-NUMA	

26	

A	Generic	cc-NUMA	Architecture	

Cache	Coherent	
Interconnect	

Processor	
M
em

or
y	

Processor	
M
em

ory	

Main Issue: How To Distribute The
Data ?

Local
Access
(fast)

Remote
Access
(slower)

27	

n Important aspect on cc-NUMA systems

à If not optimal, longer memory access times and hotspots

n OpenMP 4.0 does provide support for cc-NUMA

à Placement under control of the Operating System (OS)

à User control through OMP_PLACES

n Windows, Linux and Solaris all use the “First Touch”
placement policy by default

à May be possible to override default (check the docs)

About	Data	Distribu.on	

28	

for (i=0; i<10000; i++)
 a[i] = 0;

Cache	Coherent	
Interconnect	
M
em

or
y	

Processor	

M
em

ory	

a[0]
 :
a[9999]

Processor	Processor	

First Touch
All array elements are in the memory of

the processor executing this thread

Example	First	Touch	Placement/1	

29	

for (i=0; i<10000; i++)
 a[i] = 0;

Cache	Coherent	
Interconnect	

M
em

or
y	

Processor	

M
em

ory	

a[0]
 :
a[4999]

#pragma omp parallel for num_threads(2)

First Touch
Both memories now have “their own

half” of the array

a[5000]
 :
a[9999]

Processor	

Example	First	Touch	Placement/2	

Processor	Processor	

30	

Get	Real	

31	

“Don’t	Try	This	At	Home	(yet)”	

32	

The	Ini.al	Performance	(35	GB)	

0.000#

0.010#

0.020#

0.030#

0.040#

0.050#

0# 4# 8# 12# 16# 20# 24# 28# 32# 36# 40# 44# 48#

Bi
lli
on

#T
ra
ve
rs
ed

#E
dg
es
#p
er
#S
ec
on

d#
(G
TE
PS
)#

Number#of#threads#

SPARC#T5J2#Performance#(SCALE#26)#

Game	over	beyond	
16	threads	

33	

That	doesn’t	scale	very	well	
	

Let’s	use	a	bigger	machine	!	

34	

Ini.al	Performance	(35	GB)	

0.000#

0.010#

0.020#

0.030#

0.040#

0.050#

0# 4# 8# 12# 16# 20# 24# 28# 32# 36# 40# 44# 48#

Bi
lli
on

#T
ra
ve
rs
ed

#E
dg
es
#p
er
#S
ec
on

d#
(G
TE
PS
)#

Number#of#threads#

SPARC#T5J2#and#T5J8#Performance#

T5J2#SCALE#26# T5J8#SCALE#26#

35	
3
5

Oops!	That	can’t	be	true	
	

Let’s	run	a	larger	graph	!	

36	

Ini.al	Performance	(280	GB)	

3
6

0.000#

0.010#

0.020#

0.030#

0.040#

0.050#

0# 4# 8# 12# 16# 20# 24# 28# 32# 36# 40# 44# 48#Bi
lli
on

#T
ra
ve
rs
ed

#E
dg
es
#p
er
#S
ec
on

d#
(G
TE
PS
)#

Number#of#threads#

SPARC#T5J2#and#T5J8#Performance#

T5J2#SCALE#29# T5J8#SCALE#29#

37	
3
7

Let’s	Get	Technical	

38	

37%$ 31%$
22%$ 15%$

7%$ 6%$

27%$
21%$

16%$

10%$

6%$ 4%$

29%$

26%$

20%$

13%$

8%$
6%$

11%$

20%$

27%$

22%$ 27%$

4%$ 5%$
12%$

17%$

31%$ 34%$

3%$ 6%$ 15%$
25%$ 22%$

3%$ 2%$ 4%$ 3%$ 2%$ 2%$

0%$

20%$

40%$

60%$

80%$

100%$

1$ 2$ 4$ 8$ 16$ 20$
Numberofthreads$

TotalCPUTime$Percentage$DistribuDon$(Baseline,$SCALE$26)$

Atomic$operaDons$

OMPPatomic_wait$

OMPPcriDcal_secDon_wait$

OMPPimplicit_barrier$

Other$

make_bfs_tree$

verify_bfs_tree$

Total	CPU	Time	Distribu.on	

3
8

Func.on	1	

Func.on	2	

39	

0"

10"

20"

30"

40"

50"

60"

70"

80"

0" 750" 1500" 2250" 3000" 3750" 4500" 5250" 6000" 6750" 7500" 8250" 9000"

Ba
nd

w
id
th
"(G

B/
s)
"

Elapsed"Time"(seconds)"

SPARC"T5F2"Measured"Bandwidth"(BASE,"SCALE"28,"16"threads)""

Total" Read"(Socket"0)" Read"(Socket"1)" Write"(Socket"0)" Write"(Socket"1)"

Bandwidth	Of	The	Original	Code	

3
9

Less	than	half	of	the	memory	
bandwidth	is	used	

40	

Summary	Original	Version	

4
0

•  Communica4on	costs	are	too	high	
–  Increases	as	threads	are	added	
– This	seriously	limits	the	number	of	threads	used	
– This	is	turn	affects	memory	access	on	larger	graphs	

•  The	bandwidth	is	not	balanced	
•  Fixes:	

– Find	and	fix	many	OpenMP	inefficiencies	
– Use	some	efficient	atomic	func4ons	

41	

Methodology	

Use	The	Checklist	To	IdenDfy	BoYlenecks	

Use	A	Profiling	Tool	

If	The	Code	Does	Not	Scale	Well	

Tackle	Them	One	By	One	

This	Is	An	Incremental	Approach	

But	Very	Rewarding	

42	
4
2

BO	 BO	
Secret	Sauce	

43	

Note	the	much	shorter	run	Dme	for	the	
modified	version	

Comparison	Of	The	Two	Versions	

4
3

Atomic/cri4cal	
sec4on	wait	

Implicit	barrier	

Idle	state	

44	

0.00#

0.10#

0.20#

0.30#

0.40#

0.50#

0.60#

0.70#

0# 16# 32# 48# 64# 80# 96# 112#128#144#160#176#192#208#224#240#256#Bi
lli
on

#T
ra
ve
rs
ed

#E
dg
es
#p
er
#S
ec
on

d#
(G
TE
PS
)#

Number#of#threads#

SPARC#T5L2#Performance#(SCALE#29)#

T5L2#Baseline# T5L2#OPT1#

Peak	performance	
is	13.7x	higher	

Performance	Comparison	

4
4

45	
4
5

BO	 MO	
More	

Secret	Sauce	

46	

Observa.ons	

But	Needs	It	

The	Code	Does	Not	Exploit	Large	Pages	

First	Touch	Placement	Is	Not	Used	

Used	A	Smarter	Memory	Allocator	

47	

0"

25"

50"

75"

100"

125"

150"

0" 400" 800" 1200" 1600" 2000" 2400" 2800" 3200" 3600" 4000"

Ba
nd

w
id
th
"(G

B/
s)
"

Elasped"Time"(seconds)"

SPARC"T5E2"Measured"Bandwidth"(OPT2,"SCALE"29,"224"threads)""

Total"BW"(GB/s)" Read"(GBs/s)" Write"(GB/s)"

Bandwidth	Of	The	New	Code	

4
7

Maximum	Read	Bandwidth		
135	GB/s	

48	

The	Result	

4
8

0.04	 0.03	 0.03	

1.13	

0.79	
0.89	

1.47	

1.73	
1.67	

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

1.40	

1.60	

1.80	

SCALE	29	(282	GB)	 SCALE	30	(580	GB)	 SCALE	31	(1150	GB)	

Bi
lli
on

	S
ea
rc
he

d	
Ed

ge
s	P

er
	S
ec
on

d	
(G
TE
PS
)	

T5-8	OPT0	(BO)	 T5-8	OPT1	(BO)	 T5-8	OPT2	(MO)	

39-52x	improvement	
over	original	code	

49	

0"

10"

20"

30"

40"

50"

60"

70"

80"

0"

100"

200"

300"

400"

500"

600"

700"

800"

1" 2" 4" 8" 16" 32" 64" 128" 256" 384" 512"

El
ap

se
d"
Ti
m
e"
(m

in
ut
es
)"

Number"of"threads"

SPARC"T5E8"Graph"Search"Performance"
"(SCALE"30"E"Memory"Requirements:"580"GB)"

Search"Time"(minutes)" Speed"Up"

Bigger	Is	Definitely	Be[er!	

4
9

72x	
speed	up	!	

Search	Dme	reduced	
from	12		hours	to	10	

minutes	

50	

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

1.40#

1.60#

0# 64# 128# 192# 256# 320# 384# 448# 512# 576# 640# 704# 768# 832# 896# 960#1024#

Bi
lli
on

#T
ra
ve
rs
ed

#E
dg
es
#p
er
#S
ec
on

d#
(G
TE
PS
)#

Number#of#threads#

SPARC#T5L8#(SCALE#32,#OPT2)##

A	2.3	TB	Sized	Problem	

5
0

Even	starDng	at	32	threads	
the	speed	up	is	sDll	11x	

896	Threads	!	

51	

0"
5"

10"
15"
20"
25"
30"
35"
40"
45"
50"
55"

26" 27" 28" 29" 30" 31"

Sp
ee
d"
U
p"
O
ve
r"T

he
"O
PT

0"
Ve

rs
io
n"

SCALE"Value"

SPARC"T5D8"Speed"Up"Over"OPT0"

OPT1" OPT2"

Tuning	Benefit	Breakdown	

5
1

Somewhat	
diminishing	return	

Bigger	is	
be[er	

52	
5
2

MO	 MOBO	
Different	

Secret	Sauce	

53	

57-75x	
improvement	

0.04	 0.03	 0.03	

1.13	

0.79	
0.89	

1.47	

1.73	 1.67	

2.15	

2.43	 2.42	

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

SCALE	29	(282	GB)	 SCALE	30	(580	GB)	 SCALE	31	(1150	GB)	

Bi
lli
on

	S
ea
rc
he

d	
Ed

ge
s	P

er
	S
ec
on

d	
(G
TE
PS
)	

T5-8	OPT0	(BO)	 T5-8	OPT1	(BO)	 T5-8	OPT2	(MO)	 T5-8	OPT2	(MOBO)	

A	Simple	OpenMP	Change	

54	54	

“I	Value	My	Personal	Space”	

55	

My	Favorite	Simple	Algorithm	
void mxv(int m,int n,double *a,double *b[],
 double *c)
{
 for (int i=0; i<m; i++)
 {
 double sum = 0.0;
 for (int j=0; j<n; j++)
 sum += b[i][j]*c[j];
 a[i] = sum;
 }
}

parallel loop

=	 *	

j	

i	

56	

The	OpenMP	Source	

#pragma omp parallel for default(none) \
 shared(m,n,a,b,c)
for (int i=0; i<m; i++)
{
 double sum = 0.0;
 for (int j=0; j<n; j++)
 sum += b[i][j]*c[j];
 a[i] = sum;
}

=	 *	

j	

i	

57	

0"

5,000"

10,000"

15,000"

20,000"

25,000"

30,000"

35,000"

0.25" 1" 4" 16" 64" 256" 1024" 4096" 16384" 65536" 262144"

Pe
rf
or
m
an

ce
"in
"M

flo
p/
s"

Memory"Footprint"(KByte,"logD2"scale)"

1x1"thread" 2x1"threads" 4x1"threads" 8x1"threads" 8x2"threads"

Performance	On	Intel	Nehalem	

Max	speed	up	
is	~1.6x	only	

Wait	a	minute!	
This	algorithm	is	highly	

parallel	

NotaDon:	Number	of	cores	x	
number	of	threads	within	core	

System: Intel X5570 with 2 sockets,
8 cores, 16 threads at 2.93 GHz

58	

?

59	

Let's	Get	Technical	

60	

hw	thread	0	
hw	thread	1	

core 0 caches

hw	thread	0	
hw	thread	1	

core 1 caches

hw	thread	0	
hw	thread	1	

core 2 caches

hw	thread	0	
hw	thread	1	

core 3 caches

socket 0

sh
ar

ed
 c

ac
he

m
em

or
y

hw	thread	0	
hw	thread	1	

core 0 caches

hw	thread	0	
hw	thread	1	

core 1 caches

hw	thread	0	
hw	thread	1	

core 2 caches

hw	thread	0	
hw	thread	1	

core 3 caches

socket 1

sh
ar

ed
 c

ac
he

m
em

or
y

Q
PI

 In
te

rc
on

ne
ct

A	Two	Socket	Nehalem	System	

61	

Data	Ini.aliza.on	Revisited	
#pragma omp parallel default(none) \
 shared(m,n,a,b,c) private(i,j)
{
#pragma omp for
 for (j=0; j<n; j++)
 c[j] = 1.0;

#pragma omp for
 for (i=0; i<m; i++)
 {
 a[i] = -1957.0;
 for (j=0; j<n; j++)
 b[i][j] = i;
 } /*-- End of omp for --*/

} /*-- End of parallel region --*/

=	 *	

j	

i	

62	

0"

5,000"

10,000"

15,000"

20,000"

25,000"

30,000"

35,000"

0.25" 1" 4" 16" 64" 256" 1024" 4096" 16384" 65536" 262144"

Pe
rf
or
m
an

ce
"in
"M

flo
p/
s"

Memory"Footprint"(KByte,"logD2"scale)"

1x1"thread" 2x1"threads" 4x1"threads" 8x1"threads" 8x2"threads"

Data	Placement	Ma[ers!	

The	only	change	is	the	
way	the	data	is	
distributed	

Max	speedup	
is	~3.3x	now	

NotaDon:	Number	of	cores	x	
number	of	threads	within	core	

System: Intel X5570 with 2 sockets,
8 cores, 16 threads at 2.93 GHz

63	

m
em

or
y

m
em

or
y

Sy
st

em
 In

te
rc

on
ne

ct

A	Two	Socket	SPARC	T4-2	System	
hw	thread	0	

hw	thread	7	

core 0 caches

hw	thread	0	

hw	thread	7	

core 7 caches sh
ar

ed
 c

ac
he

...
..	

...
..	

...
..	

...
..	

socket 0

hw	thread	0	

hw	thread	7	

core 0 caches

hw	thread	0	

hw	thread	7	

core 7 caches sh
ar

ed
 c

ac
he

...
..	

...
..	

...
..	

...
..	

socket 1

64	

0"

5,000"

10,000"

15,000"

20,000"

25,000"

30,000"

35,000"

0.25" 1" 4" 16" 64" 256" 1024" 4096" 16384" 65536" 262144"

Pe
rf
or
m
an

ce
"in
"M

flo
p/
s"

Memory"Footprint"(KByte,"logD2"scale)"

1x1"Thread" 8x1"Threads" 16x1"Threads" 16x2"Threads"

Performance	On	SPARC	T4-2	

Max	speed	
up	is	~5.8x	

Scaling	on	larger	matrices	is	
affected	by	cc-NUMA	effects	
	(similar	as	on	Nehalem)	

Note	that	there	are	no	idle	
cycles	to	fill	here	

NotaDon:	Number	of	cores	x	
number	of	threads	within	core	

System: SPARC T4 with 2 sockets,
16 cores, 128 threads at 2.85 GHz

65	

0"

5,000"

10,000"

15,000"

20,000"

25,000"

30,000"

35,000"

0.25" 1" 4" 16" 64" 256" 1024" 4096" 16384" 65536" 262144"

Pe
rf
or
m
an

ce
"in
"M

flo
p/
s"

Memory"Footprint"(KByte,"logD2"scale)"

1x1"Thread" 8x1"Threads" 16x1"Threads" 16x2"Threads"

Data	Placement	Ma[ers!	

Max	speed	
up	is	~11.3x	

The	only	change	is	the	
way	the	data	is	
distributed	

NotaDon:	Number	of	cores	x	
number	of	threads	within	core	

System: SPARC T4 with 2 sockets,
16 cores, 128 threads at 2.85 GHz

66	

Summary	Matrix	Times	Vector	

0"

5,000"

10,000"

15,000"

20,000"

25,000"

30,000"

35,000"

0.25" 1" 4" 16" 64" 256" 1024" 4096" 16384" 65536" 262144"

Pe
rf
or
m
an

ce
"in
"M

flo
p/
s"

Memory"Footprint"(KByte,"logD2"scale)"

Nehalem"OMP"16"threads" Nehalem"OMPDFT"16"threads"

T4D2"OMP"16"threads" T4D2"OMPDFT"16"threads"

1.9x	

2.1x	

67	

The	Wrapping	

68	

Wrapping	Things	Up	
“While	we're	sDll	waiDng	for	your	MPI	debug	run	to	finish,	I	want	to	
ask	you	whether	you	found	my	informaDon	useful.”	

“Yes,	it	is	overwhelming.	I	know.”	

“And	OpenMP	is	somewhat	obscure	in	certain	areas.	I	know	that	as	
well.”	

69	

Wrapping	Things	Up	
“I	understand.	You're	not	a	Computer	ScienDst	and	just	need	to	get	
your	scienDfic	research	done.”	

“I	agree	this	is	not	a	good	situaDon,	but	it	is	all	about	Darwin,	you	
know.	I'm	sorry,	it	is	a	tough	world	out	there.”	

70	

It	Never	Ends	
“Oh,	your	MPI	job	just	finished!	Great.”	
“Your	program	does	not	write	a	file	called	'core'	and	it	wasn't	there	
when	you	started	the	program?”	
“You	wonder	where	such	a	file	comes	from?	Let's	talk,	but	I	need	to	
get	a	big	and	strong	coffee	first.”	

“WAIT!	What	did	you	just	say?”	

71	

It	Really	Never	Ends	
“Somebody	told	you	WHAT	??”	

“You	think	GPUs	and	OpenCL	will	solve	all	your	problems?”	

“Let's	make	that	an	XL	Triple	Espresso.	I’ll	buy”	

72	

Thank You And Stay Tuned !
ruud.vanderpas@oracle.com

73	

Ruud	van	der	Pas	
Dis.nguished	Engineer	

Architecture	and	Performance	
SPARC	Microelectronics,	Oracle	

Santa	Clara,	CA,	USA	

DTrace
Why It Can Be Good For You

74	

n DTrace is a Dynamic Tracing Tool
à Supported on Solaris, Mac OS X and some Linux flavours

n Monitors the Operating System (OS)
n Through “probes”, the user can see what the OS is

doing
n Main target: OS related performance issues
n Surprisingly, it can also greatly help to find out what

your application is doing though *

Mo.va.on	

*)	A	regular	profiling	tool	should	be	used	first	

75	

n A DTrace probe is written by the user

n When the probe “fires”, the code in the probe is
executed

n The probes are based on “providers”
n The providers are pre-defined

à Example: “sched” provider to get info from the scheduler

à You can also instrument your own code to have DTrace

probes, but there is little need for that

How	DTrace	Works	

provider:module:function:name

76	

Example	–	Thread	Affinity/1	

sched:::off-cpu
/ pid == $target && self->on_cpu == 1 /
{
 self->time_delta = (timestamp - ts_base)/1000;

 @thread_off_cpu [tid-1] = count();
 @total_thr_state[probename] = count();

 printf("Event %8u %4u %6u %6u %-16s %8s\n",
 self->time_delta, tid-1, curcpu->cpu_id,
 curcpu->cpu_lgrp, probename, probefunc);

 self->on_cpu = 0;
 self->time_delta = 0;
}

“predicate”	

77	

Example	–	Thread	Affinity/2	
pid$target::processor_bind:entry
/ (processorid_t) arg2 >= 0 /
{
 self->time_delta = (timestamp - ts_base)/1000;
 self->target_processor = (processorid_t) arg2;

 @proc_bind_info[tid-1, curcpu->cpu_id,
 self->target_processor] = count();

 printf("Event %8u %4u %6u %6u %9s/%-6d %8s\n",
 self->time_delta, tid-1, curcpu->cpu_id,
 curcpu->cpu_lgrp, "proc_bind", self->target_processor,
 probename);

 self->time_delta = 0;
 self->target_processor = 0;
}

78	

Example	–	Example	Code	
#pragma omp parallel
{
 #pragma omp single
 {
 printf("Single region executed by thread %d\n",
 omp_get_thread_num());
 } // End of single region
} // End of parallel region

export OMP_NUM_THREADS=4
export OMP_PLACES=cores
export OMP_PROC_BIND=close
./affinity.d -c ./omp-par.exe

79	

Example	–	Result	
===
 Affinity Statistics
===

Thread On HW Thread Lgroup Created Thread Count
 0 787 7 1 1
 0 787 7 2 1
 0 787 7 3 1

Thread Running on HW Thread Bound to HW Thread
 0 787 784
 1 771 792
 2 848 800
 3 813 808

80	

Thank You And Stay Tuned !
ruud.vanderpas@oracle.com

