"OpenMP Does Not Scale **Ruud** van der Pas **Distinguished Engineer Architecture and Performance SPARC Microelectronics, Oracle** Santa Clara, CA, USA

Agenda

The Myth
Deep Trouble
Get Real

The Wrapping

The Myth

"OpenMP Does Not Scale"

A Common Myth

A Programming Model Can Not "Not Scale"

What Can Not Scale:

The Implementation The System Versus The Resource Requirements

Or You

Hmmm What Does That Really Mean ?

Some Questions I Could Ask

"Do you mean you wrote a parallel program, using OpenMP and it doesn't perform?"

"I see. Did you make sure the program was fairly well optimized in sequential mode?"

Some Questions I Could Ask

"Oh. You didn't. By the way, why do you expect the program to scale?"

"Oh. You just think it should and you used all the cores. Have you estimated the speed up using Amdahl's Law?"

"No, this law is not a new EU financial bail out plan. It is something else."

Some Questions I Could Ask

"I understand. You can't know everything. Have you at least used a tool to identify the most time consuming parts in your program?"

"Oh. You didn't. You just parallelized all loops in the program. Did you try to avoid parallelizing innermost loops in a loop nest?"

"Oh. You didn't. Did you minimize the number of parallel regions then?"

"Oh. You didn't. It just worked fine the way it was.

More Questions I Could Ask

"Did you at least use the nowait clause to minimize the use of barriers?"

"Oh. You've never heard of a barrier. Might be worth to read up on."

"Do all threads roughly perform the same amount of work?"

"You don't know, but think it is okay. I hope you're right."

I Don't Give Up That Easily

"Did you make optimal use of private data, or did you share most of it?"

"Oh. You didn't. Sharing is just easier. I see.

I Don't Give Up That Easily

"You seem to be using a cc-NUMA system. Did you take that into account?"

"You've never heard of that either. How unfortunate. Could there perhaps be any false sharing affecting performance?"

"Oh. Never heard of that either. May come handy to learn a little more about both."

The Grass Is Always Greener ...

"So, what did you do next to address the performance ?"

"Switched to MPI. I see. Does that perform any better then?"

"Oh. You don't know. You're still debugging the code."

Going Into Pedantic Mode

"While you're waiting for your MPI debug run to finish (are you sure it doesn't hang by the way ?), please allow me to talk a little more about OpenMP and Performance."

Deep Trouble

OpenMP And Performance/1

The transparency and ease of use of OpenMP are a mixed blessing

→ Makes things pretty easy

→ May mask performance bottlenecks

In the ideal world, an OpenMP application "just performs well"

Unfortunately, this is not always the case

OpenMP And Performance/2

Two of the more obscure things that can negatively impact performance are cc-NUMA effects and False Sharing

Neither of these are restricted to OpenMP

- They come with shared memory programming on modern cache based systems
- →But they might show up because you used OpenMP
- \rightarrow In any case they are important enough to cover here

Considerations for cc-NUMA

Main Issue: How To Distribute The Data ?

About Data Distribution

Important aspect on cc-NUMA systems

If not optimal, longer memory access times and hotspots
 OpenMP 4.0 does provide support for cc-NUMA
 Placement under control of the Operating System (OS)
 User control through OMP_PLACES
 Windows, Linux and Solaris all use the "First Touch" placement policy by default

 \rightarrow May be possible to override default (check the docs)

First Touch All array elements are in the memory of the processor executing this thread

half" of the array

Get Real

The Initial Performance (35 GB)

That doesn't scale very well

Let's use a bigger machine !

Initial Performance (35 GB)

Oops! That can't be true

Let's run a larger graph !

Initial Performance (280 GB)

Let's Get Technical

Total CPU Time Distribution

Bandwidth Of The Original Code

Summary Original Version

- Communication costs are too high
 - Increases as threads are added
 - This seriously limits the number of threads used
 - This is turn affects memory access on larger graphs
- The bandwidth is not balanced
- Fixes:
 - Find and fix many OpenMP inefficiencies
 - Use some efficient atomic functions

Methodology

If The Code Does Not Scale Well

Use A Profiling Tool

Use The Checklist To Identify Bottlenecks

Tackle Them One By One

This Is An Incremental Approach

But Very Rewarding

Comparison Of The Two Versions

Solution Studio Performance Analyzer <u>File View H</u> elp Note the much shorter run time for the							
🖉 🗳 🖏 🖨 🖻 🕼 🖓 🚱 View Mode 🛛 👘 modified version							
OpenMP Parallel Region OpenMP Task Timeline Experiments							
Time	(sec) 1,000 2	2,000	3,000	4,000	5,000	
1,4	۲	1/11/1/11/10/		et de la comencia de La comencia de la comencia	******	*********	
1.5	$(\)$	J., MILL			*****		
1.6	${}^{\odot}$	9 (m ¹ · · · · · · · · · · · · · · · · · · ·					
1.7	۲						
1.8	۲						
2							
2.1	۲	мещик			section wait		
2.2	(>				Implicit barrier		
2.3	۲				Idle state		
2.4	۲						
Scale(sec) 1,000 2,000 3,000 4,000 5						5,000	
Performance Comparison

First Touch Placement Is Not Used

The Code Does Not Exploit Large Pages

But Needs It

Used A Smarter Memory Allocator

Bandwidth Of The New Code

Bigger Is Definitely Better!

A 2.3 TB Sized Problem

896 Threads !

Tuning Benefit Breakdown

ORACLE

A Simple OpenMP Change

57-75x improvement

"I Value My Personal Space"

My Favorite Simple Algorithm

The OpenMP Source

Performance On Intel Nehalem

System: Intel X5570 with 2 sockets, 8 cores, 16 threads at 2.93 GHz

<u>Notation:</u> Number of cores x number of threads within core

Let's Get Technical

Data Initialization Revisited

Data Placement Matters!

System: Intel X5570 with 2 sockets, 8 cores, 16 threads at 2.93 GHz

<u>Notation:</u> Number of cores x number of threads within core

ORACLE

Performance On SPARC T4-2

System: SPARC T4 with 2 sockets, 16 cores, 128 threads at 2.85 GHz

<u>Notation:</u> Number of cores x number of threads within core

Data Placement Matters!

System: SPARC T4 with 2 sockets, 16 cores, 128 threads at 2.85 GHz

<u>Notation:</u> Number of cores x number of threads within core

Summary Matrix Times Vector

The Wrapping

Wrapping Things Up

"While we're still waiting for your MPI debug run to finish, I want to ask you whether you found my information useful."

"Yes, it is overwhelming. I know."

"And OpenMP is somewhat obscure in certain areas. I know that as well."

Wrapping Things Up

"I understand. You're not a Computer Scientist and just need to get your scientific research done."

"I agree this is not a good situation, but it is all about Darwin, you know. I'm sorry, it is a tough world out there."

It Never Ends

"Oh, your MPI job just finished! Great."

"Your program does not write a file called 'core' and it wasn't there when you started the program?"

"You wonder where such a file comes from? Let's talk, but I need to get a big and strong coffee first."

"WAIT! What did you just say?"

It Really Never Ends

"Somebody told you WHAT ??"

"You think GPUs and OpenCL will solve all your problems?"

"Let's make that an XL Triple Espresso. I'll buy"

Thank You And Stay Tuned !

ruud.vanderpas@oracle.com

DTrace Why It Can Be Good For You

Ruud van der Pas

Distinguished Engineer Architecture and Performance SPARC Microelectronics, Oracle Santa Clara, CA, USA

Motivation

DTrace is a Dynamic Tracing Tool

- → Supported on Solaris, Mac OS X and some Linux flavours
- Monitors the Operating System (OS)
- Through "probes", the user can see what the OS is doing
- Main target: OS related performance issues
- Surprisingly, it can also greatly help to find out what your application is doing though *
 - *) A regular profiling tool should be used first

A DTrace probe is written by the user

provider:module:function:name

- When the probe "fires", the code in the probe is executed
- The probes are based on "providers"
- The providers are pre-defined
 - →Example: "sched" provider to get info from the scheduler
 - →You can also instrument your own code to have DTrace probes, but there is little need for that

Example – Thread Affinity/1


```
sched:::off-cpu
{
  self->time_delta = (timestamp - ts_base)/1000;
  @thread_off_cpu [tid-1] = count();
  @total_thr_state[probename] = count();
  printf("Event %8u %4u %6u %6u %-16s %8s\n",
        self->time delta, tid-1, curcpu->cpu id,
        curcpu->cpu lqrp, probename, probefunc);
  self->on cpu = 0;
  self->time delta = 0;
```

Example – Thread Affinity/2


```
pid$target::processor bind:entry
/ (processorid t) arg2 >= 0 /
{
   self->time_delta = (timestamp - ts_base)/1000;
   self->target processor = (processorid t) arg2;
   @proc bind info[tid-1, curcpu->cpu id,
                   self->target_processor] = count();
   printf("Event %8u %4u %6u %6u %9s/%-6d %8s\n",
          self->time delta, tid-1, curcpu->cpu id,
          curcpu->cpu lgrp, "proc bind", self->target processor,
          probename);
   self->time delta = 0;
   self->target processor = 0;
}
```


Example – Example Code


```
export OMP_NUM_THREADS=4
export OMP_PLACES=cores
export OMP_PROC_BIND=close
./affinity.d -c ./omp-par.exe
```


	===========	===========	=============	========
Affinity Statistics				
On HW Thread	Lgroup	Created	Thread	Count
787	7		1	1
787	7		2	1
787	7		3	1
Running on HW	Thread	Bound to	HW Thread	
5	787		784	
	771		792	
	848		800	
	813		808	
	Af On HW Thread 787 787 787 787 Running on HW	Affinity St On HW Thread Lgroup 787 7 787 7 787 7 787 7 787 7 787 7 787 7 848 848 813	Affinity Statistics On HW Thread Lgroup Created 787 7 787 7 787 7 787 7 Running on HW Thread Bound to 787 771 848 813	Affinity Statistics On HW Thread Lgroup Created Thread 787 7 1 787 7 2 787 7 2 787 7 3 Running on HW Thread Bound to HW Thread 787 784 784 771 792 848 800 813 808

Thank You And Stay Tuned !

ruud.vanderpas@oracle.com

