®

@tﬁl

Software

Faster Code....
Faster

Intel® Parallel Studio XE 2017

I B ploo 100+
; 3 | 2]
il i ok
FraLcep ol (o e RN 0)5
.9‘.0’100(¥ .9:1]‘,‘-']1..‘ _ (;11

3

‘

—
-

dﬁ%ﬁ%%—lngml\/hc(ﬁiaéel Klemm
oftware and T§,§rvices Group

01051

michael.kle intel.com

Unleash the Beast...

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS™. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Parallel Studio XE

Intel® Advisor

®
Intel Inspector Vectorization Optimization & Thread Prototyping

Memory & Threading Checking

Intel® Cluster Checker
Cluster Diagnostic Expert System

® ™ 11
Intel p:{;';rligie P’i‘)?lef’l'f'er Intel® Trace Analyzer & Collector
MPI Profiler

Profiling, Analysis &
Architecture

Cluster Tools

Intel® Data Analytics Acceleration Library Intel® MPI Library

Optimized for Data Analytics & Machine Learning —
Intel® Integrated Performance Primitives

Image, Signal & Compression Routines

Intel® Threading Building Blocks

Task Based Parallel C++ Template Library

Intel® Math Kernel Library

Optimized Routines for Science, Engineering & Financial

Performance
Libraries

Intel® C/C++ & Fortran Compilers

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL” COMPILERS

Intel® Compilers for Parallel Studio XE 2017

What's new in Intel® C++ 17.0 and Intel® Fortran 17.0

Productive language-level vectorization & parallelism models for advanced developers driving
application performance

Common updates
» Enhanced support for the newest AVX2 and AVX512 instruction sets for the latest Intel®
processors (including Intel® Xeon Phi)
» Enhanced optimization/vectorization reports — register allocation
= Tightintegration with Intel® Advisor
» |nitial support for OpenMP* 4.5, offering improved vectorization control, new SIMD instructions,
and much more

Intel® C++ Compiler Intel® Fortran Compiler
= SIMD Data Layout Template to facilitate = Substantial coarray performance improvement
vectorization for your C++ code — up to twice as fast as previous versions on
= Virtual function vectorization capability non-trivial coarray Fortran programs
» Improved compiler loop and function alignment = Almost complete Fortran 2008 support
= Full support for the latest C11 and C++14 = Further interoperability with C (part of draft
standards Fortran 2015)

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Impressive Performance Improvement
Intel® Compiler OpenMP* Explicit Vectorization

» Three lines added that take full advantage of

both SSE or AVX

» Pragma’s ignored by other compilers so code

is portable

#pragma omp declare simd linear(z:40) uniform(L, N, Nmat) linear(k)

float path_calc(float *z, float L[J[VLEN], int k, int N, int Nmat)

#pragma omp declare simd uniform(L, N, Nopt, Nmat) linear(k)
float portfolio(float L[J[VLEN], int k, int N, int Nopt, int Nmat)
for (path=0; path<NPATH; path+=VLEN) {
/* Initialise forward rates */
z = z0 + path * Nmat;
#pragma omp simd linear(z:Nmat)
for(int k=0; k < VLEN; k++) {
for(i=0;i<N;i++) {
L[i][k] = LO[T;

/* LIBOR path calculation */
float temp = path_calc(z, L, k, N, Nmat);
v[k+path] = portfolio(L, k, N, Nopt, Nmat);

/* move pointer to start of next block */
z += Nmat;

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Libor calculation speedup
Normalized performance data — higher is better

Xy

Serial SSE 4.2 Core-AVX2

Configuration: Intel* Xeon® CPU E3-1270 @ 3.50 GHz Haswell system (4 cores with Hyper-Threading On), running at 3.50GHz, with 32.0GB RAM, L1 Cache 256KB, L2
Cache 1.0MB, L3 Cache 8.0MB, 64-bit Windows* Server 2012 R2 Datacenter. Compiler options;, SSE4.2: -O3 ~Qopenmp -simd ~QxSSE4.2 or AVX2: -O3 -Qopenmp
~simd -QxCORE-AVX2. For more information go to http://www.ntel.com/performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel
Corporation

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice. Notice revision #20110804.

Impressive performance improvement
Intel C++ Explicit Vectorization using OpenMP* SIMD

SIMD Speedup on Intel® Xeon® Processor
Normalized performance data — higher is better

6,06
4,8
4,27 301
2,48 2,43
1,00 1,00 1,00 1,00 1,00 1,00

AoBench Collision Detection Grassshader Mandelbrot Libor RTM-stencil Geomean

1,00

Serial Bm SSE4.2 B Core-AVX2

Configuration: Intel® Xeon® CPU E3-1270 @ 3.50 GHz Haswell system (4 cores with Hyper-Threading On), running at 3.50GHz, with 32.0GB RAM, L1 Cache 256KB, L2 Cache 1.0MB, L3 Cache 8.0MB, 64-bit Windows* Server 2012 R2 Datacenter. Compiler options:,
SSE4.2: -03 -Qopenmp -simd -QxSSE4.2 or AVX2:-03 -Qopenmp -simd -QxCORE-AVX2. For more information go to http://www.intel.com/performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL SOFTWARE ANALYSIS TOOLS

Intel® VTune™ Amplifier XE Performance Profiler

Intel® Advisor XE Vectorization Optimization and Thread Prototyping

INTEL” VTUNE™ AMPLIFIER XE
PERFORMANCE PROFILER

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel” VTune™ Amplifier

Faster, Scaleable Code, Faster
Get the Data You Need

» Hotspot (Statistical call tree), Call counts (Statistical)

» Thread Profiling — Concurrency and Lock & Waits Analysis
» Cache miss, Bandwidth analysis...

* GPU Offload and OpenCL™ Kernel Tracing

Find Answers Fast

* View Results on the Source / Assembly

» OpenMP Scalability Analysis, Graphical Frame Analysis

» Filter Out Extraneous Data — Organize Data with Viewpoints
» Visualize Thread & Task Activity on the Timeline

Easy to Use

» No Special Compiles — C, C++, C#, Fortran, Java, ASM
* Visual Studio* Integration or Stand Alone

» Graphical Interface & Command Line

» Local & Remote Data Collection

* Analyze Windows* & Linux* data on OS X*?

1 Events vary by processor. 2 No data collection on OS X*

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Quickly Find Tuning Opportunities

CPU Timew *[@ A
Function / Call Stack Effective Time by Utilization B/ pin | Overhead
Didie @Poor MOk @ ldeal @Over | ™M) TMe
45075 [[
isionsRange - 0s 0s
0s 3.4065 0s
3.359; 0s 0s
3.250; 0s 0s
2335 I 0.671s 0s
Selected 1 row(s): 11515 0.728s 0s v

See Results On The Source Code
T J e || || [| (9] [8)[Q) sy somos: e <]

Source CPU Time: Total by Utilization
line & Source
[Dide @Poor [0k B Ideal @ Over
81 for (int i = 0; i < mem array i max; it+) 0.300s]
82 {
E] for (int j = 0; j < mem array_j_max; j++) 4936 [
84 {
85 mem_array [j*mem array_j_max+i] = *£ill_val| 7.207s [EENMENNNN

Tune OpenMP Scalability

() OpenMP Region CPU Usage Histogram

Elapsed Time
[R]
T T
b b 7

&

[CPUSample
@l 7 Tasks
> | B

New!

Profile Python & Go! A

$
=0
And Mixed Python / C++ / Fortran pgthon |

Low Overhead Sampling Precise Line Level Details
= Accurate performance data without high = No guessing, see source line level detail
overhead instrumentation Mixed Python / native C, C++, Fortran...

= Launch application or attach to a running
process

| Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTEL VTUNE AMPLIFIER XE 2017

= Optimize native code driven by Python

B Collection Log | | @ Analysis Target Analysis Type| | Ml Summary | |#% Bottom-up| | #% Caller/Callee| | #% Top-down Tree| | BB Platform | | B¢ corec | P

Aszembly) < Q| | Assembly grouping: | Address W

CPU Time: Total ~

Source
Line Source Effective Time by Utilization

Olidle @ Poor OOk B Ideal B Owver

CPU Time W
Viewing ¢ 1of1 [0 selected stack(s)
100.0% (3.388s of 3.388s)

core.pyd_pyx f 4core 12SlowpokeCore ..

core.pyd!_pyx pf dcore 125lowpokeCore. .

main.py!main+lx18 - main.py: 18

10 def dologi():

11 template, cbkjects = makeFarams() pgrthon2||!+D'xEQQ—[u...
12 for _ in xrange(1000): main.pytdolog+0x30 - main.py.13

13 & logging.info(template. format (*objects)) 26.7% python27 dilliunc@ e 10fbcl+ ~Lun..

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Three Keys to HPC Performance:
Threading, Memory Access, Vectorization - Intel VTune™ Amplifier

Threading: CPU Utilization

= Serial vs. Parallel time

» Top OpenMP regions by potential gain

» Tip: Use hotspot OpenMP region
analysis for more detail

Memory Access Efficiency

= Stalls by memory hierarchy

» Bandwidth utilization

» Tip: Use Memory Access analysis

Vectorization: FPU Utilization
» FLOPST estimates from sampling

» Tip: Use Intel Advisor for precise
metrics and vectorization optimization

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

B8 Collection Log| @ Analysis Target INENEERIE & Summary §i5

Elapsed Time *: 3.859s

GFLOPS“: 4.743
CPU Utilization *: 31.3% [«

27.509 Out of 88 logical CPUs
0.761s (19.7%)
3.098s (80.3%)
2.470s (64.0%)
0.627s (16.3%)

Average CPU Usage

Serial Time

Parallel Region Time
Estimated |deal Time
OpenMP Potential Gain

Top OpenMP Regions by Potential Gain

CPU Usage Histogram

Memory Bound ~: 50.3% &
Cache Bound 0.092
DRAM Bound 0.194

MNUMA: % of Remote Accesses @ 0.0%
Bandwidth Utilization Histogram

FPU Utilization “: 0.3% [«
GFLOPS :
Scalar GFLOPS
Packed GFLOPS : 0.008
Top 5 hotspot loops (functions) by FPU usage

4.743
4.735

>U Usage Histogram

New!

® HPC Performance Characterization HPC Performance Characterization viewpoint (change) @ INTELVTUNE AMPLIFIER XE 2017

is histogram displays a percentage of the wall time the specific number of CPUs were runnin g simultaneous| ly. Spin

d Overhead time adds to the Idle CPU usage value.

sooms al
R
3
>
&

600ms

Elapsed Time

|
|
|
|
|
|
400ms }

200ms

Target Utilization

——

Simultaneously Utilized Logical CPUs

T For 3rd, 5th, 6th Generation Intel® Core™ processors and second generation

Intel® Xeon Phi™

processor code named Kni

hts Landing.

Improved!

Optimize Memory Access
Memory Access Analysis - Intel® VTune™ Amplifier 2017

INTEL VTUNE AMPLIFIER XE 2017

Tune data structures for performance

= Attribute cache misses to data structures :
H H H gF S B R D - .y

(not just the code causing the miss) e : |

| | Support for Custom memory allocato rS Grouping BandwwdmDum‘am/EandwwdmUmhzannnType/MemmyOb]e.x.:;/AanahnnS‘ack = v@@

Bandwidth Demain / Bandwidth Utiliz... CPUTime v ‘ L2 Migs Count
'v DRAM, GB/sec 840.803s D 6,000,180

Optimize NUMA latency & scalability e
» True & false sharing optimization =
= Auto detect max system bandwidth

905295 2.000.060
840.503 NN 6,000,180

Any Process - Any Thread v I Any Module L . Show inline fun vl Functions only vI

= Easier tuning of inter-socket bandwidth Bandwidth Domain / Bandwidth Utiliz.. CPU Time ¥ [L2 Miss Count
. . v DRAM, GB/sec 840.803s D 6,000,180
Easier install, latest processors ¥ High 5036355 WD 4000120
. . . . b stream.c:100 (381 MB) 2.000.060
= No special drivers required on Linux* b stieam c:98 (351 MB) 2,000,060
f— . Medium 241638 D 0
» |ntel® Xeon Phi™ processor MCDRAM (high = 905295 8 5 000,060
bandwidth memory) analysis » MCDRAW Flat GB/sec 840,503 NS 6,000,180

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved. ‘ |nte| . 16

*Other names and brands may be claimed as the property of others.

New!

Storage Device Analysis (HDD, SATA or NVMe SSD)
Intel® VTune™ Amplifier

Disk Input and Output Histogram

Are You |/O Bound or CPU Bound?

Operation Type: | write

= Explore imbalance between 1/O operations .|}
2{% Sliders set
(async & sync) and CompUte 15 thresholds for
= Storage accesses mapped to ! “ /O Queue Depth
the source code : T T ?LOIV/V Savsi/';.t
. . -EH — » wi 1
= See when CPU is waiting for 1/O oG i i e i L .
= Measure bus bandwidth to storage Bt (1012 Tl oo e
= [Thread (TID: 0) ., 7 duk CPU Time
. §£ an T 7= |/O APls
Latency analysis 5§ sev L o Tas
. = [+] 1/0 Queue Depth
u Tune Storage accesses Wlth g% major fault Ml!OQueueDepth
. = o [¥] * Slow
latency histogram ; (1% Good
. . . g §jE/devsee v res
= Distribution of I/O over multiple devices S s ey
.2 tate
EE A /dev/sda W Jud 170 Wait
== Mk Active

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Performance Snapshots
Three Fast Ways to Discover Untapped Performance

Is your application making good use of modern
computer hardware?

= Run a test case during your coffee break.

*= High level summary shows which apps can
benefit most from code modernization and
faster storage.

Pick a Performance Snapshot:

= Application — for non-MPI apps

= MPI - for MPI apps

= Storage - for systems. Servers and
workstations with directly attached storage.

Free download: http://www.intel.com/performance-snapshot
Also included with Intel® Parallel Studio and Intel® VTune™ Amplifier products.

Optimization Notice
Copyright © 2016, Intel Corporation

*Other names and brands r

= Application Performance Snapshot | Preview

18.7s
2.9

41.5%

3 ()
59%

http://www.intel.com/performance-snapshot

MPI Performance Snapshot

Your application is OpenMP bound.

High OpenMP imbalance has been identified.

Use Intel VTune Amplifier for further analysis.

Application: /nfs/inn/home/yshchyok/p/svn/testing/ts/results/2015.09.23
12.31.09/itac_testspec/vt_key_default_test_c_icc15_n2_itac_it_mps/test
Number of ranks: 4

lUsed statistics: app_stat_4p2B8tixt, stats_dp28tixt

Creation date: 2015-09-28 14:58:48

Wallclock time
1.78 sec

Calculation

45.38%

MPI

54.62%

OpenMP

30.53%

OpenMP Imbalan

12.90%

Free download:

MPI Imbalance

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

TOP 5 MPI functions

Func %
Wait 71.88
Barrier 20.92
Init 398
Send 2.04
Recv 0.83

Memory usage
peax 25.29 MB

ean 2095 MB

Per-process memary usage affects the
application scalability.

Cycles Per Instruction Rate

max: 2.23
7 min: 1.10

—

This could be caused by such issues as
memary stalls, instruction starvation,
branch misprediction cor long latency
instructions.

Please use |ntel ® VTune™ Amplifier XE to
identify the cause of this bottleneck.

High values are usually bad. The CPl value
may be too high.

GFLOPS

20.67

1/O operations
1/0 wait: 0.00 sec 0.00%
peae 0.00%

mean 0.00%

This is the time the application spends
waiting for an I/O operation to complete.
High percentage of I/O wait time indicates
that your application actively reads data
from the storage device. This application
does not spend much time on /O
operations.

Memory Bound Coefficient

ma: 0.23

0.18 min: 0.14

It indicates that the application doesn't
spend much time waiting for data.
High values are usually bad. The
application is not Memory Bound.

http://www.intel.com/performance-snapshot. Also included with Intel® Parallel Studio Cluster Edition.

http://www.intel.com/performance-snapshot

INTEL ADVISOR XE

VECTORIZATION OPTIMIZATION AND THREAD PROTOTYPING
FOR SOFTWARE ARCHITECTS

Get Faster Code Faster! Intel® Advisor

Vectorization Optimization

Have you:

= Recompiled for AVX2 with little gain
= Wondered where to vectorize?

» Recoded intrinsics for new arch.?

= Struggled with compiler reports?

x Survey Report
| Elapsed time: 54445 ‘ | Vectotized | | Mot Vectorized |

FILTER: | &)l Modules ¥ Al Sources v

Data Driven Vectorization:

New!

What vectorization will pay off most?

What's blocking vectorization? Why?

Are my loops vector friendly?

Will reorganizing data increase performance?
Is it safe to just use pragma simd?

"Intel® Advisor's Vectorization Advisor
= permitted me to focus my work where it really

mattered. When you have only a limited
amount of time to spend on optimization, it is

3

Function Call Sites and Loop & | O Wector lssues TSire'rLfev %O';a; E!’:nf Loop Type | Why Mo Vectarization?
0 [loop at stl_algo.hd 7400, O 017051 017051 Scalar & non-vectorizable | ...
EE [loop at loopstl.cpp:2449,. ¢ 2 Ineffective peeled.. 017051 017051 144 Collapse Collapse

2[00 [loop at loopstl.cpp2.. | [] 015051 015051 12 Wectarized (B

12O [loop at loopstl.cpp., | [] 0.020s 1 0.02051 4 Rernainder
20O [loop at loopstl.cpp:7800,, [] 017051 017051 500 Scalar B wectarization possi...

[loop at loopstl.cpp:35... ‘¢ 1 High vector regi.. 0.160s| 0.160s| 12 Expand Expand
<

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

invaluable."

Gilles Civario
Senior Software Architect
Irish Centre for High-End Computing

Faster Code Faster with Data Driven Design

Intel® Advisor — Vectorization Optimization and Thread Prototyping

™| Where should | add vectorization andfor threading parallelism? B

Intel Advisor XE 2016

=%

Faster Vectorization Optimization:
= Vectorize where it will pay off most 2 e |
= Quickly ID what is blocking vectorization | cue s o T T —

[wectarized Loops
| vecto...| fficiency |

Function Call Sites and Loop

EE [lowp at loopstl.cpp:2440... @ 2 Ineffective peeled.. 017051 0170s| 124 Collapse Collapse VX
. . . . 58] [loop at loopstl.eppiz.. [015051 0.150s1 12 Vectorized (B 2
» Tips for effective vectorization .0 oy aesptapr. O e S0l 5 Femnier
i» O [loop at loapstl.cpp:7900,, [0170s1 017051 500 Scalar @ vectorization passi..
[loop at loopstl.cpp:35 ... ¢ 1 High vector regi.. 0.160s| 0.160s| 12 Expand Expand aAvx 9% v
<

= Safely force compiler vectorization
= Optimize memory stride

Breakthrough for Threading Design: e o
= Quickly prototype multiple options g i e pety
» Project scaling on larger systems JE:Sﬁﬂi J3:2;‘3:
. . . i L (7202 L (£ 0.00015)
» Find synchronization errors before
implementing threading
= Design without disrupting development
Target CPU Count
Less Effort, Less Risk and More Impact
Part of Intel® ParaIIeIAtuio for Windows* and http://intel.ly/advisor-xe

Optimization Notice
Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

http://intel.ly/advisor-xe

New!

Next Gen Intel® Xeon Phi™ Support

Vectorization Advisor runs on and optimizes for Intel® Xeon Phi

Vectorized Loops Bl nstruction Set Analysis AVX- 5 1 2 E RI _— S peCifi C to

Vector ISA | Efficiency Gain Esti... | VL (V...| Traits Data Types I nte l® Xe O n P h i
=0 [luup e * 3 Possible || 35.225:- Ve:turlzed+Threaded (Budy, Peeled; Re.. |AVX512 I 2.21x ‘8 Divisions; FMA; Gathers Float32; .

Loops & |Vector Issues | Self Timew Loop Type

~
S [loc [7 @ 2Possiblein.. 26‘0255- Vectorized (Body}+ Threaded (OpenMP) AVX512 Divisions; Gathers; FMA Float32; ...]
S0 loc T §1Highvecto.. 5.876sH Vectorized (PeelediThreaded (OpenMP) AVX512 8 Divisions; Gathers FMA Float32, ... 256/512 [(AVXZ AVXSIZER 512 AVX512. Masked Le
‘
S [loc [0 @1Highvecto.. 33245l Vectorized (Remainder)+ Threaded (Open... AVX512 8 Divisions; Gathers; FMA Float32; .. 256/512 AVX2; AVX512ER_512; AVX512... Masked Lc
[Leop 0 34,5995 SRR Vcterized Body; Remainder) AVX512 S64x & Divisions FMA; Square Roots Float32 .. 256/51.. AVX2 AVXS12ER_512; AVXS12.. Masked Lc
-
[loop [7 ¥1Possiblein.. 33‘8495- Vectorized (Body, Peeled; Remainder) AVX512 ~28% 2.24% 8 Divisions; FMA; Gathers Float32; .. 256/512 AVX AVXZ; AVX512ER_512; AV... Masked Lc
[loop al 19‘8395- Vectorized (Body, Remainder) AVX512 |_72% 11.48x% 16; 8] Float32; .. 256/51.. AVX2 AVX512F_512 Masked Lc
- — [

@ Recommendations

: o Efficiency (72%), Speed-up (11.5x),
Vector Length (16)

Recommendation: Confirm inefficient memory access patterns Confidence: Need More Data
There is no confirmation inefficient memery access patterns are present. To confirm: Run a Memory Access Pattems analysis. . . .

Performance optimization problem and
B ~dvice how to fix it

ssue: Possible inefficient memory access patterns present
Inefficient memory access pattems may result in significant vector code execution slowdown or block automatic vectorization by the compiler. Improve performance by investigating.

Issue: Ineffective peeled/remainder) present
All or some source loop iterations are net executing in the Joop body. Improve performance by moving source loop iterations from peeleciremainder loops to the loop body.

Recommendation: Collect trip counts data
The Survey Report lacks trip counts data that might generate more precise recommendations. To fix: Run a Trip Counts analysis.

Recommendation: Align data

¥ Program metrics
Elapsed Time: 142.79s
Vector Instruction Set: AVX, AVX2, AVX512, SSE, S5E2 Number of CPU Threads: 4

Recommendation: Add data padding
The trip count is not a multiple of vector length. To fix: Do one of the following:

 Increase the size of objects and add iterations so the trip count is a multiple of vector length.
 Increase the size of static and automatie objects, and use a cempiler optien to add data padding.

[Windows'0S | Linux' 05 | @ Loop metrics
\ | /Qopt-assume-sate-padding | -qopt-assume-safe-padding | Total CPU tlme 454.08s _ 100.0%

Time in 88 vectorized loops 41.865 [ERLS

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

New!

Start Tuning for AVX-512 without AVX-512 hardware

Intel® Advisor - Vectorization Advisor

Use —axCOMMON-AVX512 —xAVX compiler flags to generate both code-paths
= AVX(2) code path (executed on Haswell and earlier processors)

= AVX-512 code path for newer hardware

Compare AVX and AVX-512 code with Intel Advisor

Vectorized Loops Instruction Set Analysis Advanced
Loops & | Self Time Loop Type — - - - - —
‘ Vect... a | Efficiency | Gain... | VL (| Compiler Es... | Traits | DataT.. |‘u"ector W...| Instruction Sets | Vectorization D¢

=] [loop in 5352_ at loopstl.cpp:5939] [l 0.641s1 Vectorized (Body) AVX2 215x 4 2.15x% FMA; Inserts Float32 128 b AVX: FMA

s [loop in s352_ at loopstl.cpp:3939] n/a Remainder [Not Executed] 4 Fi&

=[® [loop in s352_ at loopstl.cpp:5938] | [0,641s10 Vectorized (Body) AVH2 4 2 15¢ |nse rts (AVXZ) VS_

3| [loop in s352_ at loopstl.cpp:5939] n/a Vectorized (Body) [Mot Executed] AVX512 16 3,20% Gathers; FMA

5" [loop in s352_ at loopstl.cpp:5939] n/a Vectorized (Remainder) [Mot Executed] | AVX512 16 270 Gathers, EMA G ath ers (AVX_ 5 1 2)
=¥ [loep in s123_ASompSparallel_for@... [l 0,496s 10 Vectorized Versions AVX2 13,34x 8 <13,534dx Fi&; NT-stores

u [Ioop in s‘lES_.ASom_pSpa_ra_IIeI_for... n/a Peeled [Mot Executed] 2 FMA

3 [loop in s125_ASompSparallel_for... n/a Remainder [Not Executed] 8 gy FMA)l () € ALE

lloop in 5125_ASompSparallel for.. [] = 046550 Vectorized (Body) Ave | | 8 g 1354

a3l [loopin 5125 ZSompSparallel for... n/a WVectorized (Peeled) [Mot Executed] AVX512 16 B, 77x FMA A

5" [loop in 5125_ZSompSparallel for.. | | | n/a Vectorized (Body) [Not Executed] |avxsi2 | | |32 \(3061x

3 [loop in s125_ZSompSparallel_for... n/a Vectorized (Remainder) [Mot Executed] AVX312 16 , FMA . 0O A

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

New!

Precise Repeatable FLOPS Metrics

Intel® Advisor — Vectorization Optimization

= FLOPS by loop and function » Instrumentation (count FLOP) plus
(not co-processors) = Adjusted for masking
with AVX-512 processors
INTEL ADVISOR 2017
FLOPS
(=] Function Call Sites and Loops : :
GFLOPS | Al L1 GB/s | GFLOP FLOP Per lteration | L1 GE | L1 Bytes Per lteration
Bl ¥ [loop in matvec at Multiply.c:69] |0.8260 0.1633 | 5.0586 3.0720 E 18.8160 | 196
4l [loop in matvec at Multiply.c:60] | 0.9120 0.1633 5.58533 3.0720 32 18.8160 | 196
3|0 [loop in matvec at Multiply.c:69] 1.24210 0.2500 ' 4.9920 1.3440 4 533760 16
3|0 [loop in matvec at Multiply.c:60] | 1,592 @ 0.2500 &.3699 1.3440 4 53760 16
[loop in matvec at Multiply.:69] 3.055@88 02500 12,2205 0.09e0 16 03340 &4
[loop in matvec at Multiply.c:60] | 6.282 888 02500 251279 0.0960 16 032340 o4

Optimization Notice

Copyright © 2016, Intel Corporation
*Other names and brands

Enhanced Memory Access Analysis

Are you bandwidth or compute limited?

Measure Footprint

» Compare to cache size
Does it fitin cache?

Variable References

= Map data to variable
names for easier analysis

Gather/Scatter

» Detect unneeded
gather/scatters that
reduce performance

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.

New!

Site Location Loop-Carried Dependencies | Strides Distribution a Access Pattern Max. Site Footprint
[loop in s4117_ at loopstl.cpp:76 .. No information available 50% / 50% / 0% Mixed strides | 1928
[loop in s442_ at loopstl.cpp:6815] Mo information available 36% /0% / 44% Mixed strides 2368
@ [loop in s272_ at loopstl.cpp:3447] Mo information available [B0%/0%7 40% ||Mixed strides |320B
Memory Access Patterns Report | Dependencies Report|| ‘¢ Recommendations V
In] | | Stride |Type | Source | Mested Function/ | Variable references |Access Footprint | Mo
=P2 i Gather stride loopstl.cpp:3450 G d _LSEOB led_
3448 if {e[i_] >= *t)
3449 [
3450 ali] +=c [i]1*d [i]:
3451 bli J+=c [i]*ec [i I:
3452 1
Line Source | Stride L i
2450 ali_] +=c_[i] *d [i 1: = Operand Size (bits): 32
3451 bUI_J+=c [*c [i_I: g Operand Type: bit=16flosta2%18
3452 4 Vector Length: 16
3433 dummy_ {14, n, =a[l], sb[1], sc_ [1], =d_ [2 Mepibry access footprint: 320B
£ > €

Address | Line
(432652 3450
(x432661 3403
432666 3450

Assembly

vgatherdpsz
{%rl3,%rsi, 1), %ré
{%r9,%zmms, 4},

leag
wgatherdpsz
£

{%r8,%zmms, 4),

Physical Stride

%k3, Fzmml

>

A v
<

¥ Gather/scatter details
Pattern: “Unit"
Instruction accesses values in contiguous memory nofy
throughout the loop:
- unit stride within instruction
- stride between iterations = vector length
Hotizantal stride (bytes): 4
Vertical stridefbytes): 64

*Other names and brands may be claimed as the property of others.

®
- Speaker - the speaker notes are important for this
l n e presentation. Be sure to read them.

WHICH TOOL SHOULD 1 BE USING?

Optimizing Performance On Parallel Hardware

It's an iterative process...

Cluster
Scalable Tune MPI

Memory
Vectorize Bandwidth
Sensitive

Thread \ Optimize

Bandwidth

Effective

threading
?

Optimization Notice

Copyright © 2016, Intel Co
*

Performance Analysis Tools for Diagnosis
Intel® Parallel Studio XE

Cluster Intel® Trace Analyzer

Scalable Tune MPI & Collector (ITAC)
? Intel® MPI Snapshot

Intel® MPI Tuner

Memory
Vectorize Bandwidth
Sensitive

Thread \ Optimize

Bandwidth

Effective

threading
?

Intel® Intel® Intel®
VTune™ Amplifier Advisor VTune™ Amplifier

Optimization Notice

Copyright © 2016, Intel Corporation
*Other names and brands

Tools for High Performance Implementation
Intel® Parallel Studio XE

Cluster

Scalable
?

Tune MPI

Intel® MPI Library

Effective

threading
?

Vectorize

Intel® MPI Benchmarks

Memory

Bandwidth
Sensitive

Optimize
Bandwidth

Intel® Compiler

Intel® Math Kernel Library

Intel® IPP — Media & Data Library
Intel® Data Analytics Library
Intel® Cilk™ Plus

Intel® OpenMP*

Intel® TBB - Threading Library

