

Intel “Tick-Tock” Roadmap – Part I

Merom

NEW
Micro architecture

65nm

TOCK

Penryn

NEW
Process Technology

45nm

TICK

Nehalem

NEW
Micro architecture

45nm

TOCK

Westmere

NEW
Process Technology

32nm

TICK

Sandy Bridge

NEW
Micro architecture

32nm

TOCK

Ivy Bridge

NEW
Process Technology

22nm

TICK

Intel® Core™

MicroArchitecture
Micro Architecture

Codename “Nehalem”
2nd Generation

Intel® Core™
Micro Architecture

2008
SSE4.2

2011
AVX

2009
AES

2007
SSE4.1

2006
SSSE-3

2012
RDRAND
etc

3nd Generation
Intel® Core™

Micro Architecture

Haswell

NEW
Micro architecture

22nm

TICK

Broadwell

NEW
Process Technology

14nm

TOCK

Skylake

NEW
Micro architecture

14nm

TICK

TBD

NEW
Process Technology

10nm

TOCK

TBD

NEW
Micro architecture

10nm

TICK

TBD

NEW
Process Technology

7nm

TOCK

2017 ??????2015 !
5 new Inst.

2013

AVX-2

???

4nth Generation
Intel® Core™

Micro Architecture
TBD TBD TBD TBD TBD

Intel “Tick-Tock” Roadmap – Part II
Future Release Dates & Features subject to Change without Notice !

Xeon
Latest released – Broadwell (14nm process)
• Intel’s Foundation of HPC Performance
• Up to 22 cores, Hyperthreading
• ~66 GB/s stream memory BW (4 ch. DDR4 2400)
• AVX2 – 256-bit (4 DP, 8 SP flops) -> >0.7 TFLOPS
• 40 PCIe lanes

Intel Confidential

Current Intel® Xeon Platform - Broadwell

5

Intel® Xeon® Processors

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

20.0%

Core Single Thread IPC Performance

Per Generation

Cumulative

Feature Xeon E5-2600 v3
(Haswell-EP, 22nm)

Xeon E5-2600 v4
(Broadwell-EP, 14nm)

Cores Per Socket Up to 18 Up to 22

Threads Per Socket Up to 36 threads Up to 44 threads

Last-level Cache (LLC) Up to 45 MB Up to 55 MB

QPI Speed (GT/s) 2x QPI 1.1 channels 6.4, 8.0, 9.6 GT/s

PCIe* Lanes/
Controllers/Speed(GT/s)

40 / 10 / PCIe* 3.0 (2.5, 5, 8 GT/s)

Memory Population
4 channels of up to 3

RDIMMs or 3 LRDIMMs
+ 3DS LRDIMM&

Max Memory Speed Up to 2133 Up to 2400

TDP (W) 160 (Workstation only), 145, 135, 120, 105, 90, 85, 65, 55

Requires BIOS and firmware update
& 3D Stacked DIMMS depend on market availability

Compute

6

On-Chip Interconnect Architecture

7

Broadwell/Haswell Core Pipeline

Haswell/Broadwell Buffer Sizes

Nehalem Sandy Bridge Haswell

Out-of-order Window 128 168 192

In-flight Loads 48 64 72

In-flight Stores 32 36 42

Scheduler Entries 36 54 60

Integer Register File N/A 160 168

FP Register File N/A 144 168

Allocation Queue 28/thread 28/thread 56

Extract more parallelism in every generation

Intel® Microarchitecture (Haswell); Intel® Microarchitecture (Nehalem); Intel® Microarchitecture (Sandy Bridge)

Haswell and Broadwell Core Microarchitecture

32k L1 Data Cache

96 bytes/cycle
L2 Data Cache (MLC)

Fill
Buffers

AVX= Intel® Advanced Vector Extensions (Intel® AVX)

P
o

rt
7

P
o

rt
6

32K L1 Instruction Cache

Scheduler

Memory Control

Allocate/Rename/Retire Idiom EliminationLoad
Buffers

Store
Buffers

Reorder
Buffers

Pre decode
Instruction

Queue
Decoders

1.5k uOP cache

DecodersDecodersDecoders

Branch Pred

In order

Out-of-
order` P

o
rt

1

P
o

rt 2

P
o

rt 3

P
o

rt
4

P
o

rt 5

P
o

rt
0

Load &
Store Address

Store
Data

Integer
ALU & Shift

Integer
ALU & LEA

Integer
ALU & LEA

Integer
ALU & Shift

Store
Address

FP Multiply
FMA

Divide

Branch

Vector Int
Multiply
Vector

Logicals

Vector
Shifts

FP Add
FMA + FP Mult

New AGU for Stores
• Leaves Port 2 & 3 open

for Loads

New Branch Unit
• Reduces Port0 Conflicts
• 2nd EU for high branch

code

4th ALU
• Great for integer workloads
• Frees Port0 & 1 for vector

Vector
Shuffle

BranchVector Int
ALU

Vector Int
ALU

Vector
Logicals

Vector
Logicals

2xFMA
• Doubles peak FLOPs
• Two FP multiplies

benefits legacy code

10

Intel® Xeon® Processor E5 v4 Family: Core Improvements

Extract more parallelism in scheduling uops

 Reduced instruction latencies (ADC, CMOV,
PCLMULQDQ)

 Larger out-of-order scheduler (60->64 entries)

 New instructions (ADCX/ADOX)

Improved performance on large data sets

 Larger L2 TLB (1K->1.5K entries)

 New L2 TLB for 1GB pages (16 entries)

 2nd TLB page miss handler for parallel page
walks

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
Intel may make changes to specifications and product descriptions at any time, without notice

Broadwell:
What’s new

Improved address prediction for
branches and returns

 Increased Branch Prediction Unit Target
Array from 8 ways to 10

Floating Point Instruction performance
improvements

 Faster vector floating point multiplier (5 to
3 cycles)

 1024 Radix divider for reduced latency,
increased throughput

 Split Scalar divides for increased
parallelism/bandwidth

 Faster vector Gather

11

Core Cache Size/Latency/Bandwidth
Metric Nehalem Sandy Bridge Haswell

L1 Instruction Cache 32K, 4-way 32K, 8-way 32K, 8-way

L1 Data Cache 32K, 8-way 32K, 8-way 32K, 8-way

Fastest Load-to-use 4 cycles 4 cycles 4 cycles

Load bandwidth 16 Bytes/cycle
32 Bytes/cycle

(banked)
64 Bytes/cycle

Store bandwidth 16 Bytes/cycle 16 Bytes/cycle 32 Bytes/cycle

L2 Unified Cache 256K, 8-way 256K, 8-way 256K, 8-way

Fastest load-to-use 10 cycles 11 cycles 11 cycles

Bandwidth to L1 32 Bytes/cycle 32 Bytes/cycle 64 Bytes/cycle

L1 Instruction TLB
4K: 128, 4-way

2M/4M: 7/thread
4K: 128, 4-way

2M/4M: 8/thread
4K: 128, 4-way

2M/4M: 8/thread

L1 Data TLB
4K: 64, 4-way

2M/4M: 32, 4-way
1G: fractured

4K: 64, 4-way
2M/4M: 32, 4-way

1G: 4, 4-way

4K: 64, 4-way
2M/4M: 32, 4-way

1G: 4, 4-way

L2 Unified TLB 4K: 512, 4-way 4K: 512, 4-way
4K+2M shared: 1024,

8-way

New Instructions in Haswell/Broadwell
Group Description Count *

SIMD Integer Instructions

promoted to 256 bits

Adding vector integer operations to 256-bit

170 / 124Gather Load elements using a vector of indices, vectorization enabler

Shuffling / Data

Rearrangement

Blend, element shift and permute instructions

FMA Fused Multiply-Add operation forms (FMA-3) 96 / 60

Bit Manipulation and

Cryptography

Improving performance of bit stream manipulation and decode, large integer

arithmetic and hashes

15 / 15

TSX=RTM+HLE Transactional Memory 4/4

Others MOVBE: Load and Store of Big Endian forms

INVPCID: Invalidate processor context ID

2 / 2

A
V

X
-2

* Total instructions / different mnemonics

14

High-Level Architecture & Instruction Set

Xeon Phi
Knights Landing (14nm process),
• Optimized for highly parallelized compute intensive workloads
• Common programming model & S/W tools with Xeon processors,

enabling efficient app readiness and performance tuning
• up to 72 cores, 490 GB/s stream BW, on-die 2D mesh
• AVX512– 512-bit (8 DP, 16 SP flops) -> >3 TFLOPS
• 36 PCIe lanes

Intel Confidential

Current Xeon Phi™ Platform – Knights Landing

16

A Paradigm Shift

17

Coprocessor

Fabric

Memory

Memory Bandwidth
400+ GB/s STREAM

Memory Capacity
Over 25x KNC

Resiliency
Systems scalable to >100 PF

Power Efficiency
Over 25% better than card

I/O
200 Gb/s/dir with int fabric

Cost
Less costly than discrete parts

Flexibility
Limitless configurations

Density
3+ KNL with fabric in 1U

Knights Landing

Server Processor

Host Processor

Knights Landing

Host Processor
w/ integrated Fabric

Knights Landing

Groveport Platform

+F

Knights Landing PCIe Coprocessors
Ingredient of Grantley & Purley Platforms

Solution for general purpose servers and workstations

Knights Landing Processors
Host Processor for Groveport Platform

Solution for future clusters with both Xeon and Xeon Phi

PassiveActive

Knights Landing (Host or PCIe)

5

19

I/O

Utilization

Mem Capacity

Manageability

Perf/W/$

Density

Scalability

Full

PCIe Fabric

Up to
384GB

Standard
CPU

Baseline
Up to

40% better1

>4 in 1U

>100 PF

Partial

Up to
16GB

Unique

Up to
4 in 1U

<100 PF

1Results based on internal Intel analysis using estimated power consumption and projected component pricing in the 2015 timeframe. This analysis is provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance.

Knights Landing

PCIe Coprocessor vs. Host Processor

20

KNL Instruction Set

SSE*

AVX

SSE* SSE*

AVX

AVX2

TSX

SSE*

AVX

AVX2

AVX-512 F

CDI

PF

ER

DQ

BW

SSE*

AVX

AVX2

TSX

AVX-512 F

CDI

Xeon 5600
“Nehalem”

Xeon E5-2600
“Sandy Bridge”

Xeon E5-2600v3
“Haswell”

Xeon Phi
“Knights Landing”

Future Xeon
T.B.A.

22

Intel® Software Development Emulator

 Freely available instruction emulator

– http://www.intel.com/software/sde

 Emulates existing ISA as well as ISAs for upcoming processors

 Intercepts instructions with Pin; allows functional emulation of existing and
upcoming ISAs (including AVX-512).

– Execution times may be slow, but the result will be correct.

 Record dynamic instruction mix; useful for tuning/assessing vectorization
content

 First step: compile for Knights Landing:

– $ icpc –xMIC-AVX512 <compiler args>

23

Running SDE

 SDE invocation is very simple:

– $ sde <sde-opts> -- <binary> <command args>

 By default, SDE will execute the code with the CPUID of the host.

– The code may run more slowly, but will be functionally equivalent to the target
architecture.

– For Knights Landing, you can specify the -knl option.

– For Haswell, you can specify the -hsw option.

KNL Microarchitecture

KNL Architecture Overview

DDR4

x4 DMI2 to PCH
36 Lanes PCIe* Gen3 (x16, x16, x4)

MCDRAM MCDRAM

MCDRAM MCDRAM

DDR4

Tile IMC (integrated memory
controller)

EDC (embedded DRAM
controller)

IIO (integrated I/O controller)

KNL
Package

 2D Mesh Architecture
 Out-of-Order Cores
 3x single-thread vs. KNC

ISA
Intel® Xeon® Processor Binary-Compatible (w/Broadwell)

On-package memory
Up to 16GB, ~500 GB/s STREAM at launch

Fixed Bottlenecks

Platform Memory
Up to 384GB (6ch DDR4-2400 MHz)

TILE:
(up to

36)

Enhanced Intel® Atom™ cores based on
Silvermont™ Microarchitecture

2VPU

Core

2VPU

Core
1MB
L2

HUB

26

KNL Mesh Interconnect
Mesh of Rings

 Every row and column is a (half) ring

 YX routing: Go in Y Turn Go in X

 Messages arbitrate at injection and on
turn

Cache Coherent Interconnect

 MESIF protocol (F = Forward)

 Distributed directory to filter snoops

Three Cluster Modes

(1) All-to-All (2) Quadrant (3) Sub-NUMA
Clustering

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

27

Cluster Mode: All-to-All
Address uniformly hashed across all
distributed directories

No affinity between Tile, Directory and
Memory

Lower performance mode, compared
to other modes. Mainly for fall-back

Typical Read L2 miss

1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1

2

3

4

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

28

Cluster Mode: Quadrant

Chip divided into four virtual
Quadrants

Address hashed to a Directory in the
same quadrant as the Memory

Affinity between the Directory and
Memory

Lower latency and higher BW than
all-to-all. SW Transparent.

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1

2

3

4

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

29

Cluster Mode: Sub-NUMA Clustering (SNC)

Each Quadrant (Cluster) exposed as a

separate NUMA domain to OS.

Looks analogous to 4-Socket Xeon

Affinity between Tile, Directory and
Memory

Local communication. Lowest latency
of all modes.

SW needs to NUMA optimize to get
benefit.

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1

2

3

4

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

30

KNL Core and VPU

Out-of-order core w/ 4 SMT threads

VPU tightly integrated with core pipeline

2-wide decode/rename/retire

2x 64B load & 1 64B store port for D$

L1 prefetcher and L2 prefetcher

Fast unaligned and cache-line split support

Fast gather/scatter support

31

4 threads per core SMT

Resources dynamically partitioned

 Re-order Buffer

 Rename buffers

 Reservation station

Resources shared

 Caches

 TLB

KNL Hardware Threading

Thread selection point

32

KNL Memory Modes

 Mode selected at boot

 MCDRAM-Cache covers all DDR

DDR

MCDRAM

DDR

MCDRAM

Flat Models

P
h
y
s
ic

a
l
A

d
d
re

s
s Hybrid Model

DDRMCDRAM

MCDRAM

DDRMCDRAM

Cache Model

33

MCDRAM: Cache vs Flat Mode

DDR
Only

MCDRAM
as Cache

MCDRAM
Only

Flat DDR +
MCDRAM

Hybrid

Software
Effort

Performance

No software changes required
Change allocations for

bandwidth-critical data.

Not peak
performance.

Best performance.

DDR
Only

MCDRAM
as Cache

Hybrid

Not peak
performance.

Recommended

Limited
memory
capacity

Optimal HW
utilization +

opportunity for
new algorithms

Getting performance on Knights Landing

35

Efficiency on Knights Landing

 1st Knights Landing systems appearing by end of year

 How do we prepare for this new processor without it at hand?

 Let’s review the main performance-enabling features:

– Up to 72 cores

– 2x VPU / core, AVX-512

– High-bandwidth MCDRAM

 Plenty of parallelism needed for best performance.

36

MPI needs help

 Many codes are already parallel (MPI)

– May scale well, but…

– What is single-node efficiency?

– MPI isn’t vectorising your code…

– It has trouble scaling on large shared-memory chips.

– Process overheads

– Handling of IPC

– Lack of aggregation off-die

 Threads are most effective for many cores on a chip

 Adopt a hybrid thread-MPI model for clusters of many-core

37

OpenMP 4.x

 OpenMP helps express thread- and vector-level parallelism via directives

– (like #pragma omp parallel, #pragma omp simd)

 Portable, and powerful

 Don’t let simplicity fool you!

– It doesn’t make parallel programming easy

– There is no silver bullet

 Developer still must expose parallelism & test performance

38

Lessons from Previous Architectures

 Vectorization:

– Avoid cache-line splits; align data structures to 64 bytes.

– Avoid gathers/scatters; replace with shuffles/permutes for known sequences.

– Avoid mixing SSE, AVX and AVX512 instructions.

 Threading:

– Ensure that thread affinities are set.

– Understand affinity and how it affects your application (i.e. which threads share
data?).

– Understand how threads share core resources.

39

Data Locality: Nested Parallelism

 Recall that KNL cores are grouped into
tiles, with two cores sharing an L2.

 Effective capacity depends on locality:

– 2 cores sharing no data => 2 x 512 KB

– 2 cores sharing all data => 1 x 1 MB

 Ensuring good locality (e.g. through
blocking or nested parallelism) is likely to
improve performance.

#pragma omp parallel for num_threads(ntiles)
for (int i = 0; i < N; ++i)
{

#pragma omp parallel for num_threads(8)
for (int j = 0; j < M; ++j)
{

…
}

}

40

Flat MCDRAM: SW Architecture

 Memory allocated in DDR by default

– Keeps low bandwidth data out of MCDRAM.

 Apps explicitly allocate important data in MCDRAM

– “Fast Malloc” functions: Built using NUMA allocations functions

– “Fast Memory” Compiler Annotation: For use in Fortran.

Node 0

Xeon Xeon DDRDDRKNL
MC

DRAMDDR

MCDRAM exposed as a separate NUMA node

Node 1Node 0 Node 1

Intel® Xeon® with 2 NUMA nodesKNL with 2 NUMA nodes

≈

Flat MCDRAM using existing NUMA support in Legacy OS

41

Memory Allocation Code Snippets
Allocate 1000 floats from DDR Allocate 1000 floats from MCDRAM

Allocate arrays from MCDRAM & DDR in Intel FORTRAN

float *fv;

fv = (float *)malloc(sizeof(float) * 1000);

float *fv;

fv = (float *)hbw_malloc(sizeof(float) * 1000);

c Declare arrays to be dynamic

REAL, ALLOCATABLE :: A(:), B(:), C(:)

!DIR$ ATTRIBUTES FASTMEM :: A

NSIZE=1024

c

c allocate array ‘A’ from MCDRAM

c

ALLOCATE (A(1:NSIZE))

c

c Allocate arrays that will come from DDR

c

ALLOCATE (B(NSIZE), C(NSIZE))

42

hbwmalloc – “Hello World!” Example

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <hbwmalloc.h>

int main(int argc, char **argv)
{

const size_t size = 512;
char *default_str = NULL;
char *hbw_str = NULL;

default_str = (char *)malloc(size);
if (default_str == NULL) {

perror("malloc()");
fprintf(stderr, "Unable to allocate default string\n");
return errno ? -errno : 1;

}

hbw_str = (char *)hbw_malloc(size);
if (hbw_str == NULL) {

perror("hbw_malloc()");
fprintf(stderr, "Unable to allocate hbw string\n");
return errno ? -errno : 1;

}

sprintf(default_str, "Hello world from standard memory\n");
sprintf(hbw_str, "Hello world from high bandwidth memory\n");
fprintf(stdout, "%s", default_str);
fprintf(stdout, "%s", hbw_str);

hbw_free(hbw_str);
free(default_str);

return 0;
}

Fallback policy is controlled with
hbw_set_policy:
– HBW_POLICY_BIND
– HBW_POLICY_PREFERRED
– HBW_POLICY_INTERLEAVE

Page sizes can be passed to
hbw_posix_memalign_psize:
– HBW_PAGESIZE_4KB
– HBW_PAGESIZE_2MB
– HBW_PAGESIZE_1GB

43

Memory Modes

MCDRAM as Cache

 Upside:

– No software modifications required.

– Bandwidth benefit.

 Downside:

– Latency hit to DDR.

– Limited sustained bandwidth.

– All memory is transferred DDR ->
MCDRAM -> L2.

– Less addressable memory.

Flat Mode

 Upside:

– Maximum bandwidth and latency
performance.

– Maximum addressable memory.

– Isolate MCDRAM for HPC application use only.

 Downside:

– Software modifications required to use DDR
and MCDRAM in the same application.

– Which data structures should go where?

– MCDRAM is a limited resource and tracking it
adds complexity.

