
1	/	7	Introduction	to	OpenMP:	Exercises	and	Handout		

{terboven,	schmidl,	kapinos}@itc.rwth-aachen.de	 	 Exercises_OMP.docx	

Introduction	to	OpenMP	
Christian	Terboven,	Dirk	Schmidl,	Paul	Kapinos		
IT	Center,	RWTH	Aachen	University	
Seffenter	Weg	23,	52074	Aachen,	Germany	
{terboven,	schmidl,	kapinos}@itc.rwth-aachen.de	

Abstract	
This	 document	 guides	 you	 through	 the	 exercises.	 Please	 follow	 the	 instructions	 given	 during	 the	
lecture/exercise	session	on	how	to	login	to	the	cluster.		

The	.tar.bz2	archive	containing	all	exercises	can	be	found	here:	https://goo.gl/2cdVts.	It	contains	both	
C/C++	and	Fortran	versions	of	the	exercises.	
	

Linux:	Please	download	the	corresponding	archive	and	extract	it	to	your	$HOME	directory,	for	example	
via	the	following	commands.	The	links	can	be	opened	with	a	web	browser	if	you	prefer:	

cd $HOME
wget https://goo.gl/2cdVts
 bunzip2 2cdVts
tar –xvf 2cdVts.out

	

If	you	need	help	or	have	any	question	please	do	not	hesitate	to	ask.	

	

Linux:	The	prepared	makefiles	provide	several	targets	to	compile	and	execute	the	code:	

• debug:	The	code	is	compiled	with	OpenMP	enabled,	still	with	full	debug	support.	
• release:	 The	 code	 is	 compiled	 with	 OpenMP	 and	 several	 compiler	 optimizations	 enabled,	

should	not	be	used	for	debugging.	
• run:	Execute	the	compiled	code.	The	OMP_NUM_THREADS	environment	variable	should	be	set	

in	the	calling	shell.	
• clean:	Clean	any	existing	build	files.	

	 	

		

2	/	7	Introduction	to	OpenMP:	Exercises	and	Handout		

{terboven,	schmidl,	kapinos}@itc.rwth-aachen.de	 	 Exercises_OMP.docx	

1 Hello	World	
Go	to	the	hello	directory.	Compile	the	hello	code	via	‘make [debug|release]’	and	execute	the	
resulting	executable	via	‘OMP_NUM_THREADS=procs make run’,	where	procs	denotes	the	number	
of	threads	to	be	used.	

Exercise	1:	Change	the	code	that	(a)	the	thread	number	(thread	id)	and	(b)	the	total	number	of	threads	
in	the	team	are	printed.	Re-compile	and	execute	the	code	in	order	to	verify	your	changes.	

C/C++:	In	order	to	print	a	decimal	number,	use	the	%d	format	specifier	with	printf():	

int i1 = value;
int i2 = other_value;
printf(“Value of i1 is: %d, and i2 is: %d”, i1, i2);

Exercise	2:	In	which	order	did	you	expect	the	threads	to	print	out	the	Hello	World	message?	Did	your	
expectations	meet	your	observations?	If	not,	is	that	wrong?	

	

2 Parallelization	of	Pi	(numerical	integration)	
Go	to	the	pi	directory.	This	code	computes	Pi	via	numerical	integration.	Compile	the	pi	code	via	‘make
[debug|release]’	 and	 execute	 the	 resulting	 executable	 via	 ‘OMP_NUM_THREADS=procs make

run’,	where	procs	denotes	the	number	of	threads	to	be	used.	

Exercise	1:	Parallelize	the	Pi	code	with	OpenMP.	The	compute	intensive	part	resides	in	one	single	loop	
in	the	CalcPi()	function,	hence	the	parallel	region	should	be	placed	there	as	well.	Re-compile	and	
execute	the	code	in	order	to	verify	your	changes.	

Note:	Make	sure	that	your	code	does	not	contain	any	data	race	–	that	is	two	threads	accessing	the	
same	shared	variable	without	proper	synchronization	and	at	least	one	of	those	accesses	is	for	writing.	

Exercise	2:	If	you	work	on	a	multicore	system	(e.g.	the	cluster	at	RWTH	Aachen	University)	measure	
the	speedup	and	the	efficiency	of	the	parallel	Pi	program.	

#	Threads	 Runtime	[sec]	 Speedup	 Efficiency	
1	 	 	 	
2	 	 	 	
3	 	 	 	
4	 	 	 	
6	 	 	 	
8	 	 	 	
12	 	 	 	

	

	

3	/	7	Introduction	to	OpenMP:	Exercises	and	Handout		

{terboven,	schmidl,	kapinos}@itc.rwth-aachen.de	 	 Exercises_OMP.docx	

3 Parallelization	of	an	iterative	Jacobi	Solver	
Go	to	the	jacobi	directory.	Compile	the	jacobi.c	code	via	‘make [debug|release]’	and	execute	
the	 resulting	 executable	 via	 ‘OMP_NUM_THREADS=procs make run’,	 where	 procs	 denotes	 the	
number	of	threads	to	be	used.	

Exercise	1	(optional	-	only	if	you	are	already	familiar	with	the	tool):	Use	the	VTune	Amplifier	XE	to	
find	the	compute-intensive	program	parts	of	 the	Jacobi	solver.	There	should	be	three	performance	
hotspots	in	the	program	(depending	on	the	input	dataset):	

	

Number	 Line	Number	 Function	Name	 Runtime	
Percentage	

1	 	 	 	
2	 	 	 	
3	 	 	 	

	

Exercise	2:	Parallelize	the	compute-intensive	program	parts	with	OpenMP.	For	a	simple	start,	create	
one	parallel	region	for	each	performance	hotspot.	

Exercise	3:	Try	to	combine	parallel	regions	that	are	in	the	same	routine	into	one	parallel	region.	

Exercise	4:	If	you	are	working	on	a	NUMA	machine,	think	about	the	data	distribution	of	the	jacobi	code.	
Change	 the	 data	 initialization	 for	 a	 better	 data	 distribution	 if	 needed.	 If	 you	 wish,	 you	 can	 also	
parallelize	the	error	check	as	well.	

	

4 First	steps	with	Tasks:	Fibonacci	and	one	small	code	snippet	
During	these	two	exercises	you	will	examine	the	new	Tasking	feature	of	OpenMP	3.0.		

Exercise	 1:	 Go	 to	 the	 fibonacci	 directory.	 This	 code	 computes	 the	 Fibonacci	 number	 using	 a	
recursive	approach	–	which	is	not	optimal	from	a	performance	point	of	view,	but	well-suited	for	this	
exercise.	

Examine	 the	 fibonacci	 code.	 Parallelize	 the	 code	 by	 using	 the	 Task	 concept	 of	 OpenMP	 3.0.	
Remember:	The	Parallel	Region	should	reside	in	main()	and	the	fib()	function	should	be	entered	the	
first	time	with	one	thread	only.	You	can	compile	the	code	via	‘make [debug|release]’.	

(optional)	 During	 the	 presentation	 you	 have	 heard	 that	 creating	 tasks	 after	 a	 certain	 roadblock	 is	
inefficient.	Implement	that	idea	into	you	code	and	stop	creating	new	tasks	when	n	is	smaller	than	30.	
For	 the	 last	 fibonacci	 numbers	 write	 a	 separate	 function	 which	 continues	 to	 compute	 in	 serial	
execution.	

	

Exercise	2:	The	code	below	(see	next	page)	performs	a	 traversal	of	a	dynamic	 list	and	 for	each	 list	
element	the	process()	function	is	called.	The	for-loop	continues	until	e->next	points	to	null.	Such	a	

4	/	7	Introduction	to	OpenMP:	Exercises	and	Handout		

{terboven,	schmidl,	kapinos}@itc.rwth-aachen.de	 	 Exercises_OMP.docx	

loop	could	not	be	parallelized	in	OpenMP	so	far,	as	the	number	if	loop	iterations	(=	list	elements)	could	
not	be	computed.	Parallelize	this	code	using	the	Task	concept	of	OpenMP	3.0.	State	the	scope	of	each	
variable	explicitly.	

01 List l;
02 Element e;
03
04
05
06
07 for(e = l->first; e; e = e->next)
08 {
09
10
11 process(e);
12
13 }

	

5 Reasoning	about	Work-Distribution	
Go	 to	 the	for	 directory.	 Compile	 the	for	 code	 via	 ‘make [debug|release]’	 and	 execute	 the	
resulting	executable	via	‘OMP_NUM_THREADS=procs make run’,	where	procs	denotes	the	number	
of	threads	to	be	used.	

Exercise	1:	Examine	the	code	and	think	about	where	to	put	the	parallelization	directive(s).	

Exercise	2:	Measure	the	speedup	and	the	efficiency	of	the	parallelized	code.	How	good	does	the	code	
scale	and	which	scaling	did	you	expect?	

#	Threads	 Runtime	[sec]	 Speedup	 Efficiency	
1	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

Is	this	what	you	expected?	

	

6 Min/Max-Reduction	in	C/C++	
Go	 to	 the	 minmaxreduction	 directory.	 Compile	 the	 MinMaxReduction	 code	 via	 ‘make
[debug|release]’	 and	 execute	 the	 resulting	 executable	 via	 ‘OMP_NUM_THREADS=procs make

run’,	where	procs	denotes	the	number	of	threads	to	be	used.		

Exercise	1:	Since	OpenMP	3.1	a	reduction	operation	for	min/max	is	supported.	Add	the	necessary	code	
to	compute	dMin	and	dMax	(as	denoted	in	lines	29	and	30)	in	parallel.		

	

5	/	7	Introduction	to	OpenMP:	Exercises	and	Handout		

{terboven,	schmidl,	kapinos}@itc.rwth-aachen.de	 	 Exercises_OMP.docx	

7 Quicksort	
Quicksort	is	a	recursive	algorithm	which,	in	this	case,	is	used	to	sort	an	array	of	random	integer	
numbers.	How	it	works	is	described	in	the	following	steps.	

A	pivot	element	is	chosen.	The	value	of	this	element	is	the	point	where	the	array	is	split	in	this	
recursion	level.	

	

All	values	smaller	than	the	pivot	element	are	moved	to	the	front	of	the	array,	all	elements	larger	than	
the	pivot	element	to	the	end	of	the	array.	The	pivot	element	is	between	both	parts.	Note,	depending	
on	the	pivot	element	the	partitions	may	differ	in	size.	

	

Both	partitions	are	sorted	separately	by	recursive	calls	to	quicksort.	

	

The	recursion	ends,	when	the	array	reaches	a	size	of	1,	because	one	element	is	always	sorted.	

Go	to	the	quicksort	directory.	Compile	the	Quicksort	code	via	‘make [debug|release]’	and	
execute	the	resulting	executable	via	‘OMP_NUM_THREADS=procs make run’,	where	procs	denotes	
the	number	of	threads	to	be	used.	

Exercise	1:	The	partitions	created	in	step	3	can	be	sorted	independent	from	each	other,	so	this	could	
be	done	in	parallel.	Use	OpenMP	Tasks	to	parallelize	the	quicksort	program.	

Exercise	2:	Creating	tasks	for	very	small	partitions	is	 inefficient.	Implement	a	cut-off	to	create	tasks	
only	if	enough	work	is	left.	E.g.	when	more	than	10k	numbers	have	to	be	sorted,	a	task	can	be	created,	
for	smaller	arrays	no	task	is	created.		

Hint:	You	can	add	if	clauses	to	the	task	pragmas.	

Exercise	3:	The	if	clause	needs	to	be	evaluated	every	time	the	function	is	called,	although	the	array	
size	does	not	exceed	10k	elements	on	a	lower	level.	Implement	a	serial_quicksort	function	and	call	this	
function	when	the	array	gets	too	small.	This	can	help	to	avoid	the	overhead	of	the	if	clause.	

	 	

6	/	7	Introduction	to	OpenMP:	Exercises	and	Handout		

{terboven,	schmidl,	kapinos}@itc.rwth-aachen.de	 	 Exercises_OMP.docx	

8 Finding	Data	Races:	Primes		
Go	to	 the	primes	directory.	Compile	 the	PrimeOpenMP	 code	via	 ‘make [debug|release]’	 and	
execute	the	resulting	executable	via	‘OMP_NUM_THREADS=procs make run’,	where	procs	denotes	
the	number	of	threads	to	be	used.	

Exercise	1:	Execute	the	program	twice,	with	a	given	number	of	threads	(at	least	two).	You	will	find	that	
the	number	of	primes	found	in	the	specified	interval	will	change	-	which	of	course	is	not	the	correct	
result.	Try	to	find	the	Data	Race	by	looking	at	the	source	code	…	

Exercise	 2:	 Use	 the	 Intel	 Inspector	 XE	 (this	 tool	 will	 be	 covered	 on	 Tuesday	 of	 PPCES	 2016,	 but	
instructions	how	to	use	it	are	below,	and	instructors	are	ready	to	help	you)	to	find	the	datarace.	In	
order	to	not	wait	for	the	analysis	result	too	long,	shorten	the	search	interval.	The	interval	is	provided	
as	arguments	to	the	program.	The	input	arguments	need	to	be	specified	in	the	Inspector	project.	Note:	
To	use	the	Inspector,	you	have	to	load	the	appropriate	module	(‘module load intelixe’),	but	you	
do	 not	 have	 to	 switch	 to	 a	 different	 machine.	 Set	 OMP_NUM_THREADS	 to	 at	 least	 2	 (‘export
OMP_NUM_THREADS=2’)	and	start	the	GUI	with	‘inspxe-gui’.	

Linux:	The	following	steps	are	needed	to	check	for	dataraces.	

1. Click	“File -> New -> Project”	
2. Enter	any	name	you	like	and	chose	a	location	to	store	the	result	data.	
3. Choose	“PrimeOpenMP.exe”	as	application	in	your	example	directory	by	using	the	“browse”	

button.	
4. As	application	argument	specify	a	small	search	interval	(e.g.	“0	1000”).	

5. Click	the	“new analysis”	button .	

6. Choose	“Locate	Deadlocks	and	Data	Races”	as	analysis	type	and	press	the	 	button.	

Exercise	3:	Correct	 the	PrimeOpenMP	 code	using	appropriate	OpenMP	synchronization	constructs.	
Use	the	Inspector	XE	to	verify	that	you	have	eliminated	all	Data	Races.	

Exercise	4:	What	are	the	limitations	of	Data	Race	detection	tools	like	the	Intel	Inspector	XE?	

Exercise	5:	Can	you	image	why	program	verification	at	compile	time	can	only	be	very	limited	and	why	
it	cannot	detect	the	issues	the	thread	checking	tools	are	able	to	report?	

	 	

7	/	7	Introduction	to	OpenMP:	Exercises	and	Handout		

{terboven,	schmidl,	kapinos}@itc.rwth-aachen.de	 	 Exercises_OMP.docx	

9 Mandelbrot	
The	Mandelbrot	set	is	a	set	of	complex	numbers	that	has	a	highly	convoluted	fractal	boundary	when	
plotted.	The	given	code	computes	and	plots	the	Mandelbrot	set.	The	generated	plot	looks	like	this:	

	

Go	to	the	mandelbrot	directory.	Compile	the	mandelbrot	code	via	‘make [debug|release]’	and	
execute	the	resulting	executable	via	‘OMP_NUM_THREADS=procs make run’,	where	procs	denotes	
the	number	of	threads	to	be	used.	

Exercise	1:	Execute	the	code	with	one	thread	and	with	multiple	threads	and	compare	the	resulting	
pictures.	Do	they	look	as	the	picture	above?	

Exercise	2:	One	of	the	pictures	is	incorrect.	Do	you	have	an	idea	what	is	going	wrong?	Do	you	know	a	
tool	which	can	help	you	to	find	the	error?	Try	to	detect	and	fix	the	error	in	the	code.	

