RWTH

IT Genter

Non-Intel Tools at Claix

aiXcelerate 2017

Dirk Schmid| (schmidl@itc.rwth-aachen.de)

IT Center der RWTH Aachen University

RWTH

Allinea Performance Reports

l IT Center

Simple to use tool to get an performance overview
“ mpiexec -> perf-report mpiexec ...

Jopt/MPlfopenmpi-1.10.4/linuxfintel_16.0.2.181/bin/mpirun -x
OMP_NUM_THREADS=2 -np 4 jacobi.exe
1 node (36 physical, 72 logical cores per node)

252 GiB per node

allinea 4 processes, OMP_NUM_THREADS was 2

login.hpc.itc.rwth-aachen.de
PERFORMANCE Tue Dec 5 2017 09:48:42 (UTC+01)

REPORTS 1 second

[rwthfs/rzjclusterfhome/ds534486/Kursejaixcelerate/C++-hyb-jacobi

Summary: jacobi.exe is Compute-bound in this configuration

g Time spent running application code. High values are usually good.
Com pUte 82.0% _ This is high; check the CPU performance section for advice

y Time spent in MPI calls. High values are usually bad.
MPI 15.0% - This is low; this code may benefit from a higher process count

Time spent in filesystem I/0. High values are usually bad.
I/O 0.0% | i el A
This is negligible; there's no need to investigate I/0 performance

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPLI section below.

As little time is spent in MPI calls, this code may also benefit from running at larger scales.

2 Non-Intel Tools on Claix
Dirk Schmidl | IT Center der RWTH Aachen University

Allinea Performance Reports

CPU

A breakdown of the 22.0% CPU time:
Single-core code 2.9% |
OpenMP regions 97.1% 1IN

Scalar numericops 41.0% [l

Vector numeric ops 0.0% |

Memory accesses 59.0% N

The per-core performance is memory-bound. Use a profiler to identify
time-consuming loops and check their cache performance.

No time is spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

I/0O

A breakdown of the 0.0% /O time:

Time in reads 0.0%
Time in writes 0.0%

|
I
Effective process read rate 0.00 bytes/s |
Effective process write rate 0,00 bytes/s |

No time is spent in |/0 operations. There's nothing to optimize here!

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 251 MiB [
Peak process memory usage 263 MiB |
Peak node memory usage 4.0% |

The peak node memory usage is very low. Running with fewer MPI
processes and more data on each process may be more efficient.

Dirk Schmidl | IT Center der RWTH Aachen University

RWTHAACHEN

l IT Center UNIVERSI I |
MPI
A breakdown of the 18.0% MPI time:
Time in collective calls 659.6%
Time in point-to-point calls 30.4%

6,65 kB/s
Effective process point-to-point rate 83.3 MB/s

Effective process collective rate

Most of the time is spent in collective calls with a very low transfer rate.
This suggests load imbalance is causing synchronization overhead; use
an MPI profiler to investigate.

The point-to-point transfer rate is low. This can be caused by inefficient
message sizes, such as many small messages, or by imbalanced
workloads causing processes to wait.

OpenMP

A breakdown of the 27.1% time in OpenMP regions:
Computation 36.9% 1
Synchronization 13.1% 1

Physical core utilization 22.2% §

System load 25.0% |1

Physical core utilization is low and some cores may be unused. Try
increasing OMP_NUM_THREADS to improve performance.

Score-P: A Unified
Measurement System

IT Genter

Scalasca Periscope
Event traces (OTF2) Call-path profiles Online
CUBE4, TAU interface
Hardware counter (PAPI, rusage) ?E?a""z‘f”mhfﬁh‘""

Score-P measurement infrastructure TECHNISCHE
Adapters

UNIVERSITAT
DRESDEN
ans

Compiler : TAU OPARI 2 TI_ITI

Instrumentor

JJULICH

FORSCHUNGSZENTRUM

Technische Universitat Minchen

Instrumentation wrapper

4 Non-Intel Tools on Claix
Dirk Schmidl | IT Center der RWTH Aachen University

UNIVERSITY OF OREGON

O

Score-P RWTH

IT Center

Supports Tracing and Profiling
Uses direct instrumentation

It also supports C/C++ and Fortran with MPI, OpenMP and hybrid
codes.

Useful for large scale applications.

Usage:
1. Precede your compiler command with scorep
icC test.c —openmp —0 a.out - scorep icc test.c —openmp —0 a.out
mpicc test.c —openmp —0 a.out - scorep mpicc test.c —openmp —0 a.out
2.a Run your application as usual to generate a profile

2.b Set SCOREP_ENABLE_TRACING=true, SCOREP_ENABLE_PROFILING=false
and run the application for a trace.

3. Analyze the data in scorep-XXXXXX

5 Non-Intel Tools on Claix
Dirk Schmidl | IT Center der RWTH Aachen University

Performance API (PAPI) RWTH

IT Genter

Standard API to access hardware counters
—> provides access to a set of hardware counters with standardized names and

over a standardized interface
— used in many tools for hardware counter access (also in Score-P)
—> papi_avail provides a list of available counters

—> allows also to measure counters to get MFLOPS

Name Code Avalil Deriv Description (Note)
PAPI L1 DCM ©x80000800 Yes No Level 1 data cache misses
PAPI L1 ICM 0Ox80000001 Yes No Level instruction cache misses
PAPI L2 DCM ©x80000002 Yes No Level 2 data cache misses
PAPI L2 ICM ©Ox80000803 Yes No Level 2 instruction cache misses
PAPI L3 DCM ©0x80000004 No No Level 3 data cache misses
PAPI L3 ICM 0x380000005 No No Level 3 instruction cache misses
PAPI L1 TCM ©Ox80800006 Yes Yes Level 1 cache misses
PAPI L2 TCM ©x80000007 Yes No Level 2 cache mis:

S SR VR PV S N

developed at:

el INIVERSITYof

H Non-Intel Tools on Claix TENN ESSEE

Dirk Schmidl | IT Center der RWTH Aachen University

http://www.utk.edu/

Vampir — Function Summary RWTH
IT Center
Overview of the total time spend in functions.
Time spend in MPI with sending or receiving messages can be seen.

Change Event Category to “Function” to split the “Function Groups”
and get more details.

Function Surmrmary

All Processes, Accumulated Exclusive Time per Function Group
11 = 10 = = A g8s 7s Gs 5= ds is 2s 1= Os
CF P-LCOP

[Es36s———onpsmc
EHP'

$.301s -GHF'-F'HEG
El'Ei 823 ms Iﬁ.ppllcatln:-n
P <10 ms |w AP

=1 ms |DI'-'IF'

7 Non-Intel Tools on Claix
Dirk Schmidl | IT Center der RWTH Aachen University

Vampir - Timeline

The Timeline gives a detailed
view of all events.

Regions and Messages of all
Processes and Threads are
shown.

Zoom horizontal or vertical for
more detailed information.

Click on a message or region for
specific details.

Non-Intel Tools on Claix
Dirk Schmidl | IT Center der RWTH Aachen University

Process O

Thread 01§
Thread 0:2 |

Thread 0:3

Process 1

Thread 1:1

Thread 1:2

Thread 1:3

Process 2

Thread 2:1

Thread 2:2

Thread 2:3 |

Process 3

Thread 3:1

Thread 3:2 |

Thread 3:3

IT Genter

00s 05s 10s 15s 20s 2.5

LT
.
=T

[4]

Vampir — Communication Matrix

RWTH

MPI Communication Matrix for Point to Point Messages
Overview over the communication behavior of the application
Coupled with timeline view

Different Views:
- Aggregated message

volume
- Min/Max message size
- Average message size
- Min/Max/Avg transfer
time

2 ...

Non-Intel Tools on Claix

Aggregated Message Volume

Process O
Thread 0:1
Thread 0:2
Thread 0:2
Process 1 .
Thread 1:1
Thread 1:2
Thread 1:3
Process 2
Thread 2:1
Thread 2:2
Thread 2:3
Process 3
Thread 3:1
Thread 3:2

Thread 3.3

Dirk Schmidl | IT Center der RWTH Aachen University

. 400 KiBT

800 Ki
720 KiB
540 KiBT

560 KiBT

480 KB

320 KiBT

240 KiBT

160 KiB
a0 K::I
0 Ki

RWTH

n IT Center

@ The callstack can give even more information on the functions
called on every thread/process.

Vampir — Process Timeline

A

Timeline
2420s 2425s 2430s

24105 2415s

Process O ,
main

acobiflacobiDatas)
parallel. region

ExchangelacobiMpibataljacobiDatad, double*)
parallel region » .

10 Non-Intel Tools on Claix
Dirk Schmidl | IT Center der RWTH Aachen University

Scalasca — Cube Data Browser

1. Metric tree
2. Call tree
3. Topology tree

All views are coupled
from left to right:

1. choose a metric
-> this metric is shown
for all functions

2. choose a function
-> the right view
shows the distribution
over processes

Non-Intel Tools on Claix

RWTH

IT Genter

Cube 3.4 QT: epik_ring_4 sum/epitome.cube (on cluster2.rz.RWTH-Aachen.DE)

File Display Topology Help

iAbsqute

iAbsqute

Metric tree

— M 51 Visits 1 :
— [] 0 Collective synchronizations

— [] 0 P2P send synchronizations

— [] 0 P2P recv synchronizations

] 0 Collective exchange communic;
—] 0 Collective communications as s
] 0 Collective communications as d
- 8 P2P send communications

— [8 P2P recv communications

— [] 0 Collective bytes outgoing

— [] 0 Collective bytes incoming

— [l 32 P2P bytes sent

— [l 32 P2P bytes received

—] 0 MPI file bytes transferred

] 0.000000 OMP thread fork time
— [] 0.000000 OMP thread managem
L 32.481765 Time

:[<] il [=)

S

Call tree | Flat view"

& [0.000291 main

[] 4.448104 MPI_Init
0.000003 MPI_Comm_rank
0.000001 MPI_Comm_size
0.000094 MPI_Send

[18.008817 MPI_Recv

[7.002886 do_work

[3.001478 MPI_Finalize

¢ [N Absolute

System tree | Box Plot | Topolo

& [- Linux Intel
B [- linuxbdc03
[1.112883 Process 0
[1.111744 Process 1
[1.110085 Process 2
[1.113481 Process 3

3

:[<] i

0.000000... 32.461765 (... 32.461765...

0.000000... 4.448194 (1... 32.461765...

Total execution
time is 32 sec.

Dirk Schmidl | IT Center der RWTH Aachen University

Out of these 4.4
sec. are spentin
MPI_Init().

Out of these 1.1
sec is spent by
every process.

Scalasca — Metric RWTH

Choose display mode:

enter
i bepe e - Absolute TH-Aachen.DE)
File Display Topology ﬂzm/ - own root percentage
Absolute 1- external percentage akis °)
Metric tree rstem tree | Box Plot = Topology O |
— [51 Visits T F [0.000297 main T T L] - Linux Intel (~]
— [] 0 Collective sy ronizations [}] 4.448194 MPI_Init = L[] - linuxbde03
— [] 0 P2P send syncM¥gnizations — [l 0.000003 MPI_Comm_rank] 1.112883 Process 0
— [] 0 P2P recv synchroMgzati — [l 0.000001 MPI_Comm_size [1.111744 Process 1
— [] 0 Collective exchange¥%ommunic: — [l 0.000094 MPI_Send] 1.110085 Process 2
— [] 0 Collective communicat\yns as s — [18.008817 MPI|_Recv] 1.113481 Process 3
— [] 0 Collective communicatio™y as d — [7.002886 do_work
— [l 8 P2P send communications Er [0 3.001478 MPI_Finalize
— 8 P2P recv communications
— [] 0 Collective bytes outgoing

i

— [] 0 Collective bytes incoming
— [l 32 P2P bytes sent

— [l 32 P2P bytes received

— [] 0 MP!I file bytes transferred
—] 0.000000 OMP thread fork tj
— [] 0.000000 OMP threa
— [32.461765 Time

Choose metric to display, like
time or number of visits.

[| n B [| I)
0.000000... 32.461765 (.. 32 451?55 !DDDDD . 4.448194 (1... 32.461765...| |0.000000 4,448194

12
- Dirk Schmidl | IT Center der RWTH Aachen University

Scalasca — Call Tree RWTH

IT Center

File DNienlavy Tnnnolaow Heln

Choose display mode:

Expand or collapse functions.

- Absolute | System tree | Box Plot = Topology O |

- Owh root percentage = [- Linux Intel (~]
- metric root percentage - B [- linuxbdc03
P 8 — [l 0.000003 MPI_Comm_rank] 1.112883 Process 0
- metric selection percentage — [0.000001 MPI_Comm_size [1.111744 Process 1
t I t — 0.000084 MPI_Send] 1.110085 Process 2
- external percentage — [18.008817 MPI|_Recv] 1.113481 Process 3
— [7.002886 do_work
send communications [3.001478 MPI_Finalize
I— = =TT =
Values are color coded in the L
tree nodes to help finding the
hotspots. . :
P Choose a function to display.
] D:DDDDDD OMP thread managem |
32.461765 Time
@ 0 t- | T o)
0.000000... 32.461765 (.. 32 451?55 &)DDDD .4.448194 (1... 32.461765...| |0.000000 4.448194

13
- Dirk Schmidl | IT Center der RWTH Aachen University

Scalasca — System View RWTH

IT Center

Cube 3.4 QT: epik ring 4 sum/epitome.cube (on cluster2.rz.RWTH-Aachen.DE)

File DNienlavy Tnnnolaow Heln

Choose display mode: | [Absolute Absolute |
- Absolute Call tree | Flat view | System tree | Box Plot | Topology O |
- Owh root percentage = [l 0.00029 | B[] - Linux Intel (]
_ H GF ; 194 MPI_Init] - linuxbdc03
medtric root percentage /— 0.000003 MPI_Comm_rank — [1.112883 Process 0

- metric SeleCtion percentage — [l 0.000001 MPI_Comm_size — [1.111744 Process 1

” t t — 0.000084 MPI_Send —] 1.110085 Process 2
- Callroot percentage — [18.008817 MPI|_Recv L[] 1.113481 Process 3
- call selection percentage — [7.002886 do_work 'T‘

& [0 3.001478 MPI_Finaliz

- external percentage

Tk [] 0 Collective bytes incoming ' = -

— [l 32 P2P bytes sent
| B 32 P2P bytes received Expand or collapse nodes.

— [] 0 MP!I file bytes transferred i T 1
— [] 0.000000 OMP thread fork time

— [10.000000 OMP thread managem See different compute nodes,
— [32.461785 Time
processes and threads.

[| [+] I] [- | It B
0.000000... 32.461765 (.. 32 461765.. !DDDDD . 4.448194 (1... 32.461765...| |0.000000 4.448194

14
- Dirk Schmidl | IT Center der RWTH Aachen University

Automatic Pattern RWN\TH

Detection with Scalasca T Contor

For large scale applications visualizing traces might be to much
iInformation.

Aggregating everything in a profile might lose important information

Scalasca allows to search for performance problems automatically.

By rerunning the trace and comparing the time stamps, several
situations can be automatically detected.

Example: The late-sender pattern

4

| f=——=-
1 _ Recv o

—

processes

.

time

The time lost through this problem (red arrow) is accumulated over
the complete run and stored in a profile.

15 Non-Intel Tools on Claix
Dirk Schmidl | IT Center der RWTH Aachen University

Automatic Pattern
Detection with Scalasca T Center

RWTH

Many patterns can be detected, like:
Computational load imbalance:

Exclusive execution time

OpenMP management
time:]

threads
=

I:'IJ.“.

tim

16 Non-Intel Tools on Claix
Dirk Schmidl | IT Center der RWTH Aachen University

Scalasca - Traces

RWTH

IT Genter

Cube 3.4 QT: epik ring 4 trace/trace.cube.gz (on cluster2.rz.RWTH-Aachen.DE)

File Display Topology Help

[Absulute c] [Absnlute c] [Absnlute G]
Metric tree Call tree | Flat view | System tree | Box Plot | Topology O |
G+ [32.192759 Time EF [0 main EF [- Linux Intel
— [51 Visits 1 0 MPI_Init = [- linuxbdc06
+} [] 0 Synchronizations] 0MPI_Comm_rank [2 Process 0
—+ 1 0 Communications [y~ = - Performance pr:ﬁﬁies] x|
=+ [0 Point-to-point []r —
[8 Sends _ ' Late Sender Time i
|_ .
- DDHD Lajte Receivers Info Description:
ECEIVES Refers to the time lost waiting caused by a blocking receive operation
[8 Late Senders (e.g.. MPI_Recv or MPI_Wait) that is posted earlier than the
Jo ective Expand/collapse corresponding send operation. il
+ 64 Bytes\yansferred — ﬁ
[10.000000 8gmputational jg ~ Find items
[0.750340Dverload Find Next . i —
[0.750340 §
5 :
Copy to clipboard 1 | :
L1
Communication problems like a

1

Late Sender can also be detected. fime
An online description explains all >
detected problems. M H M

Non-Intel Tools on Claix
Dirk Schmidl | IT Center der

RWTH Aachen University

