
OpenACC - Performance and Productivity

Paul Springer

Aachen Institute for Advanced Study in
Computational Engineering Science

Aachen, 14.03.13 – PPCES 2013

Paul Springer (AICES) OpenACC 14.03.13 1 / 17



Outline

1 Performance
Molecular Dynamics Simulation
Conjugate Gradient Method

2 Productivity

3 Conclusion

Paul Springer (AICES) OpenACC 14.03.13 2 / 17



Molecular Dynamics Simulation

Paul Springer (AICES) OpenACC 14.03.13 3 / 17



Molecular Dynamics

System of N interacting particles

E.g.: Atoms, molecules, planets

Simulate their motion

Detect chemical reactions

Forces of particle i
~fi = mi ~ai = −∇iU(t) (1)

Potential

U(t) =
1

2

N∑
i=1

N∑
j=1
j 6=i

Ui ,j(‖~ri ,j‖) (2)

Paul Springer (AICES) OpenACC 14.03.13 4 / 17

c ©
A
m
ir
N
ia
zi
,
A
IC
E
S



Molecular Dynamics

Algorithm 1 Overview of the main Molecular Dynamics routine.

1: for i = 1 to M do
2: t ← t + dt
3: compute forces(~r , ~f )
4: integrate(~r , ~f , ~v , dt)
5: //Do something with the data
6: end for

compute forces has a complexity of O(N2)

Paul Springer (AICES) OpenACC 14.03.13 5 / 17



Molecular Dynamics

Algorithm 2 Compute forces routine.

1: for i = 1 to N do
2: ~fi ← 0
3: for j = 1 to N do
4: ~ri ,j ← ~rj − ~ri
5: fi ,j ← compute force(‖~ri ,j‖)
6: ~fi ← ~fi + fi ,j ~ri ,j
7: end for
8: end for

Paul Springer (AICES) OpenACC 14.03.13 6 / 17



Molecular Dynamics

Algorithm 3 Naive OpenACC compute forces routine.

1: #pragma acc kernels
2: for i = 1 to N do
3: ~fi ← 0
4: for j = 1 to N do
5: ~ri ,j ← ~rj − ~ri
6: fi ,j ← compute force(‖~ri ,j‖)
7: ~fi ← ~fi + fi ,j ~ri ,j
8: end for
9: end for

Inner loop can not be parallelized

Loop-carried dependencies

Paul Springer (AICES) OpenACC 14.03.13 6 / 17



Molecular Dynamics

Algorithm 4 Improved compute forces routine.

1: #pragma acc kernels
2: for i = 1 to N do
3: ~fi ← 0
4: #pragma acc loop reduction(+:~fi )
5: for j = 1 to N do
6: ~ri ,j ← ~rj − ~ri
7: fi ,j ← compute force(‖~ri ,j‖)
8: ~fi ← ~fi + fi ,j ~ri ,j
9: end for

10: end for

Good: Inner loop can be parallelized

Bad: Arrays are reallocated in every iteration

Paul Springer (AICES) OpenACC 14.03.13 7 / 17



Molecular Dynamics

Algorithm 5 Overview of the main Molecular Dynamics routine with an
OpenACC data region.

1: #pragma acc data create (~r [0:N],~f [0:N])
2: for i = 1 to M do
3: t ← t + dt
4: compute forces(~r , ~f )
5: integrate(~r , ~f , ~v , dt)
6: //Do something with the data
7: end for

Paul Springer (AICES) OpenACC 14.03.13 8 / 17



Molecular Dynamics

Algorithm 6 Final compute forces routine.

1: #pragma acc update device(~r [0:N])
2: #pragma acc kernels present(~r [0:N], ~f [0:N])
3: for i = 1 to N do
4: ~fi ← 0
5: #pragma acc loop reduction(+:~fi )
6: for j = 1 to N do
7: ~ri ,j ← ~rj − ~ri
8: fi ,j ← compute force(‖~ri ,j‖)
9: ~fi ← ~fi + fi ,j ~ri ,j

10: end for
11: end for
12: #pragma acc update host(~f [0:N])

Paul Springer (AICES) OpenACC 14.03.13 9 / 17



Performance

1216 2560 4608 8704

100

200

300

400

500

#Particles

R
u

n
ti

m
e

(s
ec

)

ACC naive ACC improved ACC final CUDA

Figure: Runtime of a Molecular Dynamics (MD) Simulation for different
problem sizes over 10.000 iterations. All calculations are run in double
precision. OpenMP: 16 core SMP node. OpenACC/Cuda: Nvidia Quadro
6000 GPU.

Paul Springer (AICES) OpenACC 14.03.13 10 / 17

All versions are equally
well tuned

OpenACC performs at
80% of CUDA



Conjugate Gradient Method

Paul Springer (AICES) OpenACC 14.03.13 11 / 17



Conjugate Gradient Method

Iterative solver

Solve a large sparse linear system

Ax = b (3)

Frequently arise from partial differential equations in physics

Runtime dominated by Sparse Matrix-Vector Multiplication SPMV

Paul Springer (AICES) OpenACC 14.03.13 12 / 17

c ©
M
a
tr
ix

M
ar
ke
t



Performance

fidap011 bcsstk18

1

2

R
u

n
ti

m
e

(s
ec

)

OpenACC 12.9 OpenACC 13.1 CUDA

Figure: Runtime of a Conjugate Gradient (CG) Method for two sparse
matrices. All calculations are run in double precision. OpenMP: 16 core
SMP node. OpenACC/Cuda: Nvidia Quadro 6000 GPU.

Paul Springer (AICES) OpenACC 14.03.13 13 / 17

All versions are equally
well tuned

PGI 13.1 50%/80%
faster than PGI 12.9

OpenACC performs at
≈ 50% of CUDA

OpenMP outperforms
CUDA



Productivity

Paul Springer (AICES) OpenACC 14.03.13 14 / 17



Productivity - Contra

Function calls require inlining

PGI compiler does not support C++

Limited debugging support for PGI compiler

Revert to debugging the logic of your application

Paul Springer (AICES) OpenACC 14.03.13 15 / 17



Productivity - Pro

OpenMP OpenACC CUDA

MD 23 16 92

CG 8 16 156

Table: Number of added and modified lines of source code for each case study
and paradigm with respect to the serial version.

Few added/modified lines of source code

Data transfers are straight forward

Reductions require almost no additional effort

No need to worry about “boundary conditions”

Compiler is able to tune for a specific coprocessor

Paul Springer (AICES) OpenACC 14.03.13 16 / 17



Conclusion

High productivity (if you don’t run into compiler bugs)

Decent performance

Limited debugging support for PGI compiler

Makes coprocessor programming more straight forward

C code → OpenACC code → CUDA code

Thank you for your attention.

Paul Springer (AICES) OpenACC 14.03.13 17 / 17



Conclusion

High productivity (if you don’t run into compiler bugs)

Decent performance

Limited debugging support for PGI compiler

Makes coprocessor programming more straight forward

C code → OpenACC code → CUDA code

Thank you for your attention.

Paul Springer (AICES) OpenACC 14.03.13 17 / 17


	Performance
	Molecular Dynamics Simulation
	Conjugate Gradient Method

	Productivity
	Conclusion

