

PPCES 2012: GPGPU Programming Lab

22.03.2012 Page 1 of 10

PPCES 2012: GPGPU
Programming Lab

March 2012
https://sharepoint.campus.rwth-

aachen.de/units/rz/HPC/public/Shared%20Documents/
gpgpu-lab_ppces2012.zip

Sandra Wienke, wienke@rz.rwth-aachen.de

Abstract

This document guides you through the prepared examples and exercises. The purpose of the following tasks is to make you

feel comfortable with the basic concepts of GPGPU programming, tuning and tool usage (using CUDA, OpenCL and PGI

Accelerator).

For the first approaches, you will use the provided CUDA-capable laptops. In addition, you will test out the processing power

of the available high-end GPGPUs belonging to the RWTH GPU.

Before you start, download the archive from the link above (or go the PPCES webpage www.rz.rwth-aachen.de/ppces and

follow the link to the course material) and unzip it. Make sure that you work on your local hard disk drive, i.e. C:, on your

laptop, since Visual Studio encounters problems accessing data on network drives.

If you need help or have any question please do not hesitate to ask!

1. NVIDIA SDK Examples

NVIDIA provides a CUDA and OpenCL programming and best practices guide, as well as numerous CUDA and OpenCL

examples which are a nice starting point for familiarizing yourself with GPGPU programming.

We suggest to experiment with the NVIDIA SDK examples on the laptops provided since the SDK has already been

properly setup here. If you rather like to use Linux, please refer to Appendix 10.1.

Using the provided Windows laptops, navigate to All Programs -> NVIDIA Corporation -> NVIDIA GPU

Computing SDK 3.2. The menu entries CUDA and OpenCL comprise the corresponding documentation and links to the

sources (src) and executables (bin) of the SDK examples. Furthermore, the NVIDIA GPU Computing SDK 3.2

Browser gives an overview of all examples and the possibility to execute them right away.

1.1. DeviceQuery

Before you start programming GPGPUs, it is always a good idea to verify that your available GPU resource is CUDA-

capable and set up correctly. To this end, navigate to the deviceQuery example using the SDK Browser and execute it. If

everything works properly, you will get a list of the most important features of your GPU. Complete Table 1 with your GPU

details.

https://sharepoint.campus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/gpgpu-lab_ppces2012.zip
https://sharepoint.campus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/gpgpu-lab_ppces2012.zip
https://sharepoint.campus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/gpgpu-lab_ppces2012.zip
http://www.rz.rwth-aachen.de/ppces

PPCES 2012: GPGPU Programming Lab

22.03.2012 Page 2 of 10

Table 1: Output of deviceQuery

Feature Value

Device number and name

Number of cores

Max. number of threads per block

CUDA version
1

CUDA compute capability (cc)
2

2. CUDA Example

During this task, you will write your first CUDA program, i.e. a Jacobi solver. The idea of this program is to get to know some

basic concepts of GPGPU programming rather than to create a highly tuned application.

This Jacobi example solves a finite difference discretization (5-point-stencil) of the Helmholtz equation

using the Jacobi iterative method. To this end, the Jacobi method starts with an approximation of the objective function

u(x,y) and reuses formerly-computed matrix elements to solve the current one. It iterates only about the inner elements of

the 2D-grid (see Figure 1) so that the boundary elements are only used within the stencil. The solving process is aborted if

either the residual becomes very small or a certain number of iterations is achieved.

 Figure 1: 5-point stencil

Hints for the implementation (see tasks below):

 The size of the arrays u, uold and f is n = cols * rows.

 Except the arrays, all kernel arguments (e.g. ax, ay, b) have already been defined within the source code.

 If you have created a correct implementation, the residual will have a value of approximately and the

iteration number will be 20 (for the default medium-sized data set).

Host reference version

Later on, you will compare the performance of a host multi-core architecture to the one of a GPU. To this end, you can use

the OpenMP implementation in directory C-omp-jacobi.

On Windows, open the Visual Studio 2008 (!) project JacobiOpenMP.sln. Choose the Release x64 configuration.

Then, open the project’s properties and navigate to Configuration Properties -> Debugging -> Environment.

There, you can specify the number of threads by OMP_NUM_THREADS=<no>. Also set the Command Arguments to

“< jacobi.input.medium”.

On Linux, you can use (after compiling) make run NTHREADS=<no of threads> to try different configurations.

2.1. Getting Started

We recommend to use the provided Windows laptops for the first CUDA C (NVIDIA) and OpenCL C programming

exercises. If so, you might want to use Visual Studio and CUDA syntax highlighting (refer to appendix 10.2). If you are just

1
 The CUDA version corresponds to the version of the CUDA Toolkit which comprises the CUDA compiler or CUDA libraries

(e.g. CUBLAS). A more recent toolkit version often leads to performance improvements.
2
 The compute capability (cc) corresponds to the core architecture of the GPU and describes the features supported by the

CUDA-capable GPU. For instance, you need a device of cc 1.3 or higher to enable double precision floating point

operations.

PPCES 2012: GPGPU Programming Lab

22.03.2012 Page 3 of 10

comfortable with Linux, you have to go to the RWTH’s Linux GPU-Cluster. Follow the instructions in section 4.1 for login

and setup. Linux Makefiles will be provided (cf. section 4.2). Refer to make help to get more information.

Additionally, you can choose between CUDA C (NVIDIA) and CUDA Fortran (PGI). See the corresponding subfolders in

the GPGPU Lab archive. Note that CUDA with Fortran can only be used on the GPU-Cluster under Linux and not on the

laptops! See sections 4.1 and 4.2. Be aware that OpenCL is only implemented as a C extension.

2.2. Writing CUDA Code

Go to the C-cuda-jacobi (CUDA C) or F-cuda-jacobi (CUDA Fortran) directory in the GPGPU Lab archive. Then,

move to the level01 subfolder.

On Windows, open the Visual Studio 2008 (!) project JacobiCuda01.sln.

Task

The first approach to parallelize the program should be to distribute the work just of the outer loop (i.e. iterations over rows

of matrix) among the threads on the GPU. To simplify the reduction of the residuals, store an interim value for each row on

the GPU and reduce the corresponding array of residuals on the host.

Examine the CUDA C file jacobi.cu or CUDA Fortran file jacobi.CUF, respectively, and work on the “TODOs” in the

source code. You may have to add, delete or modify some code lines. We suggest to focus first on the data movements

between host and device before moving to the kernel implementation. You may use the function checkErr(err,

__FILE__, __LINE__) to verify that no errors occurred in your CUDA API calls. You can get the error code either by the

return value of the CUDA API call or by cudaGetLastError().

The slides from the morning session (including the colored background slides) might help you. You can also have a look at

the VectorAdd example in the NVIDIA SDK or ask one of our team members, if you have any problems.

2.3. Compiling & Executing CUDA Code

On Windows, you can use Visual Studio (project JacobiCuda01.sln has already been set up correctly) or the command

line to compile and execute CUDA programs. We recommend using Visual Studio, but a description for the Windows

command line is also included in appendix 10.3.

For Compiling, select the Release x64 configuration. Then open the project properties (right-click on the project) and

navigate to Configuration Properties -> Debugging -> Command Arguments and insert

“< jacobi.input.medium”. (Re-)Build the project. After a successful compilation, you can run the program with

Ctrl+F5 (or Debug -> Start Without Debugging).

On Linux, use make release and make run.

Task

Compile your CUDA source code and execute it. Verify in the output that the solution error is really small (see hints above).

How many MFlops can you achieve on the GPU of the laptop?

As performance comparison of GPU and CPU, run the OpenMP version of the Jacobi program in the folder C-omp-jacobi

(see “Host reference version” above for more information). First, set the number of OpenMP threads to one to get the serial

execution time of the program. Then, increase the number of threads to 2, 4, 8, 12 and 16.

How many MFlops can you achieve at maximum?

2.4. Profiling CUDA Code

For performance analysis, tool support is quite important. Besides CUDA debugging (see section 6), profiling tools are

useful as they enable an analysis based on hardware counters. NVIDIA provides the Compute Visual Profiler for CUDA C

and Fortran programs on Windows and Linux operating systems. It can also be used for NVIDIA OpenCL and PGI

Accelerator programs. We will see that later.

MFlops
CUDA 1

MFlops
OpenMP

PPCES 2012: GPGPU Programming Lab

22.03.2012 Page 4 of 10

Task

1. First, create an executable of your Jacobi program.

2. On Windows, navigate to All Programs -> NVIDIA Corporation -> CUDA Toolkit -> v3.2 ->

Compute Visual Profiler and start the Compute Visual Profiler.

On Linux, make sure that the CUDA-module is loaded and execute the command computeprof.

3. Then create a new project.

4. In the session settings, give the session an arbitrary name and choose the file profJacobi.sh in the

directory of your executable in the Launch dialogue box. This mini script just starts your executable and reads

parameters from standard input.

5. For our purpose, it is enough to see same basic profiling results. Therefore, go the register Profiler

Counters and disable all counters for Cache and all Instructions. Click on the button launch.

After a while, the profiler will list a Profiler Output. Have a look at the different columns and their values. Can you see

your launch configuration?

Applying a right-click on the Context in the left hand-side pane, you can choose from different tables and plots. Have a look

at the Time Height Plot. If you need help in understanding the plots/tables, ask one of our team members.

6. Save your project.

3. OpenCL Example

As you are now familiarized with the Jacobi example, you will implement it using OpenCL C (no Fortran available) in this

exercise. Therefore, go the directory C-ocl-jacobi in the GPGPU Lab archive.

3.1. Writing OpenCL Code

On Windows, open the Visual Studio 2008 (!) project JacobiOpenCL.sln.

On Linux, OpenCL programs can be executed with the provided Makefiles. Here, you can either use the GNU compiler or

the Intel compiler (module switch <current compiler> <new compiler, e.g. intel or gcc>).

Task

Use the same approach of parallelization like in the CUDA task. That means distribute the work just of the outer loop over

the rows of the matrix among the GPU threads. Again, store interim residual values for each row on the GPU and reduce

the corresponding array of residuals on the host.

First, open the file main.c and go to the function InitGPU(). Try to setup and initialize one GPU device by working on the

“TODOS” within the text and using OpenCL API calls. You can use checkErr(err, __FILE__, __LINE__) to check

on OpenCL errors. Second, move to the file jacobi.c. Allocate memory on the device, transfer data between host and

device (createBuffer()) and launch the kernel analogously to the CUDA example. Third, open the file jacobi.cl

which contains the actual kernel. Work on the “TODOs”.

3.2. Compiling & Executing OpenCL Code

On Windows, as in the CUDA Visual Studio project, specify the jacobi.input.medium file as command argument. Then

build and execute the project.

On Linux, use the provided Makefile (make release and make run).

Task

Compile the OpenCL source code and execute it. Verify that the solution error is sufficiently small.

How many MFlops can you get with OpenCL?

3.3. Profiling OpenCL Code

With NVIDIA’s Compute Visual Profiler, you can also profile OpenCL code for the GPU.

MFlops
OpenCL

PPCES 2012: GPGPU Programming Lab

22.03.2012 Page 5 of 10

Task

1. Open the profiler project that you have created in the last CUDA exercise.

2. Select Session in the menu and open the Session settings.

3. Choose the profJacobi.sh file in the directory of the OpenCL executable in the Launch section and start

profiling.

Have a look at the profiler output. Now, right-click on the Context of this session. Choose Comparison summary

plot and select the CUDA session that you have established before. Then, select GPU time. How does the runtime differ?

4. The RWTH GPU-Cluster

In this exercise, you will switch the programming environment and login to the RWTH GPU-Cluster since all following

exercises must be done on the cluster. The GPU-Cluster comprises a total of 57 NVIDIA GPUs. These GPUs have compute

capability 2.0 (Fermi architecture) and therefore enable higher peak performance than the GPUs embedded in the laptops

provided and also enable features like double precision floating-point operations. The GPU-Cluster runs Linux as operating

system and works with a module system such as the normal RWTH Compute Cluster. More information can be found on the

slides GPU-Cluster@RZ.

4.1. Login & Setup

To use the GPU-Cluster, first login to a frontend node of the RWTH Compute Cluster (see handout Acces to Lab Machines)

and then move to one of the following GPU nodes:

ssh –Y linuxgpus[20-24]

CUDA C

Now, make NVIDIA’s CUDA toolkit available which provides, for instance, all CUDA runtime libraries:

module load cuda

We also suggest to switch the default Intel compiler to the GNU compiler, since the CUDA C compiler nvcc assumes the

GNU compiler as default:

module switch intel gcc

CUDA Fortran

CUDA Fortran is a product of the Portland Group (PGI) in collaboration with NVIDIA. It is only available with the PGI

compiler. Therefore, switch the default Intel compiler to the PGI compiler to use CUDA capabilities with Fortran:

module switch pgi/12.1

4.2. Compiling & Executing CUDA code

Copy the GPGPU Lab archive including your Jacobi sources from the laptop to your home directory on the cluster by aid of

the SSH Secure File Transfer Client (cf. handout Acces to Lab Machines).

Afterwards, navigate to the CUDA Jacobi example. Compile it and execute it by:

make help

make release

make run [dev=<device ID>]

PPCES 2012: GPGPU Programming Lab

22.03.2012 Page 6 of 10

Since several users will use the same machine as you do and our GPUs can only be exclusively used by one user, it is

possible that the GPU is already occupied and you get a corresponding error message. Try to use the second GPU in the

node (make run dev=1) or try again after a few seconds.

How many MFlops can you achieve on the GPU-Cluster?

4.3. CUDA Batch Job (optionally)

In the directory C|F-cuda-jacobi/level01, you can find an example GPU batch script (batchCudaJacobi.sh) that

executes your CUDA Jacobi program in our LSF batch system.

Task

Modify this script by adapting the path and the e-mail address (if applicable). Now, you can submit your job to the LSF batch

system:

bsub < batchCudaJacobi.sh

Type bjobs to see the status of your batch job (e.g. PEND for pending). After the job was scheduled and executed, you can

find the results in the output file as specified in the batch script. You may want to continue with the next task, while waiting

for the results.

5. PGI Accelerator Example

During this task, you will port the basic Jacobi example to the GPU using the directives-based PGI Accelerator

Programming Model with C or Fortran. The PGI compiler is available on our Linux (GPU-)Cluster (not on your laptop):

module switch intel pgi/12.1

Note that you can easily activate collecting simple timing information by a compiler flag (i.e. –ta=nvidia,time). The

corresponding feedback includes also information about the launch configuration. In our example, you may use a Makefile

option to activate it:

make time=1

5.1. Getting Started

Similar to NVIDIA’s Device Query example, PGI provides the pgaccelinfo command. Execute it and extend Table 1 by

the values of the GPUs on the cluster as far as possible (device revision number = compute capability).

5.2. First Example

Go the directory C|F-pgiacc-jacobi/level01 and open the file jacobi.c or jacobi.F90, respectively.

In the previous examples, we have swapped the pointers of u and the uold to exchange their content on the device.

However, since PGI Accelerator does not support pointer assignment within accelerator regions at the moment, you have to

use here a slightly different approach than in the CUDA and OpenCL examples. To this end, the content of both arrays

shall be copied element-wise on the GPU. The rest of the parallelization concept of the previous examples can be taken for

the PGI Accelerator approach.

Task 1

First, add accelerator regions (cf. the “TODO” in the source code) around (a) the swapping part of u and uold and (b) the

nested loop for the computations. Manage the data transfer of the arrays using the copy clause at both accelerator regions.

MFlops
CUDA 1

PPCES 2012: GPGPU Programming Lab

22.03.2012 Page 7 of 10

This is a very naive approach, but will show what can be done wrong. Compile the program using the provided Makefile

(make help for more information). You will get a nice compiler feedback. Verify that there is a message “Accelerator

kernel generated” which says that your specified region can be moved to the GPU. Also make sure that the reduction in

recognized. Check which loop scheduling is automatically applied. Where is the data copied?

Afterwards, open the Compute Visual Profiler again:

module load cuda

computeprof &

Profile the PGI Accelerator (use profJacobi.sh) application and have a look at the Time Height Plot. Can you see

when the data is copied between host and device?

Task 2

Since the previous approach contained to many data transfers, enclose the while-loop with an data region and adapt the

data clauses. Note that uold is only locally used on the device.

Furthermore, set explicitly a loop schedule: Use the one from the CUDA and OpenCL examples i.e. map the outer loops to

all threads and execute the inner loops sequentially.

How many MFlops do you achieve using this PGI Accelerator version?

Note that this version does more work (due to the modified swapping of u and uold and the implicit reduction) than the

CUDA and OpenCL versions.

Since PGI Accelerator is a directive-based approach, you can easily ignore the accelerator directives using compiler flags.

Execute your code only on the host by:

make [release | debug] ser=1

5.3. Loop scheduling

You have already experimented with different loop schedules. Now, you should add a second level of parallelism to the

accelerated regions. That means that the outer loops should be distributed to all blocks (multiprocessors) and work of the

inner loops shall be done by one thread each. Look at the compiler feedback for verification.

How many MFlops do you get with this modified work distribution?

6. CUDA Debugger

Debugging tools are very important for a productive program development process. However, debugging support for GPUs

is still not as popular as for CPUs. For CUDA C, there are the Totalview and DDT debugger under Linux and Parallel Nsight

(Visual Studio Plugin) under Windows. In this task, you will get a short overview of the Totalview Debugger on our GPU-

Cluster environment. Therefore, use the CUDA C Jacobi program in the directory Debugging in the GPGPU Lab achieve

which contains some minor mistakes.

Task

1. Create a debug version of the program with make debug. Note that both flags “-g -G” are needed to create

debug information (see command line).

2. Load Totalview in version 8.9.2-2 (!) from our module system: module load totalview/8.9.2-2

3. Start Totalview (specify the Jacobi program to debug): totalview ./jacobi.exe &

4. Click OK on the popped-up window.

MFlops
PGI Acc 1

MFlops
PGI Acc 2

PPCES 2012: GPGPU Programming Lab

22.03.2012 Page 8 of 10

In the symbol bar, you can find buttons for (re-)starting, halting or killing the debug session of your program.

5. Click on Go to start your program.

6. If your program contains any CUDA code,

you will get a pop-up window in which you

are asked whether you want to set any

breakpoints in your CUDA code.

7. Click on Yes.

8. Now, set two breakpoints:

 Line 56: if (idx >= 1 && idx <= rows-2)

 Line 66: end of GPU kernel

9. Continue to run the program by clicking Go again. The debugger will stop at the first breakpoint in your CUDA

code.

10. In the menu, navigate to Tools -> CUDA Devices. Can you see which devices are available on the machine?

11. See the Stack Frame and find the variable idx. What is its value?

12. Below the symbol bar, you can see fields which contains the block ID and thread ID of the current thread within

the grid that was started on the GPU. Change the first dimensions of the block and the thread specifications.

Compare the value of the idx variable.

13. Then, double-click on the variable (array) name residuals in the Stack Frame. This will open a window with

details of the variable.

14. Double-click on the variable’s address in the text field value.

15. Modify the type of the variable by adding the size of the array. Then, you will have: @generic float[2000]

Have a look at the values of the array elements. Leave the window open for the next steps.

16. In the main window of Totalview, click on Go again to run to the next breakpoint.

17. Have a look at the values of the array elements again. Did all values change? Have a closer look at the very first

element and the last elements of the array. What is wrong? Try to find the error in the program and fix it.:

7. CUDA Advanced

As you have seen in the last PGI Accelerator exercise, the kind of work distribution (besides leveraging low-latency

memory) can be crucial to get good performance. In this task, you will implement the loop schedule from section 5.3 with

CUDA.

Task

Start either from the CUDA version that you have written in the previous exercises or go to the directory C|F-cuda-

jacobi/level02 and open the Jacobi source code. In the latter, almost everything except the kernel will be given. Work

on the “TODOs”. If you use your own files, distribute the outer loop to the blocks on the GPU and the inner loop to the

threads within the blocks. Use the device shared memory to store interim residual results for each thread within the block. At

the end of the kernel, reduce these values to one residual value per block. Note that this should be done by only one thread.

How many MFLops do you get with CUDA and the new loop schedule

including usage of shared memory?

8. Analyzing the impact of GPU parameters (optionally)

In this section, you will find out that the GPU parameter configuration can have a high impact on the performance

(depending on the application). Here, we provide a C CUDA program for the SAXPY computation:

 ⃗ ⃗ ⃗

The output of the program lists performance metrics as runtimes and GFlops. They are obtained for a serial program version

on the host computer, for the GPU kernel (just including the SAXPY calculations in the kernel) and for the whole GPU

program run (including CPU-GPU data transfer).

You can use the following make targets and options:

make [release | debug]

make run [N=<vector size> [TB=<#threads per block> DEV=<GPU id>]]

MFlops
CUDA 2

PPCES 2012: GPGPU Programming Lab

22.03.2012 Page 9 of 10

0

2

4

6

8

10

12

14

16

18

20

0 5000000 10000000 15000000

vector size

 GFlops: GPU (kernel)

Task

1. Impact of data size (=total number of threads (here))

While leaving the number of threads per block at the constant value of 256, vary the vector sizes (see Table 2) and

have a look at runtimes, GFlops and speedups. Write down the GFlops in Table 2 or sketch your results in Figure 2

and Figure 3. What can you conclude?

Considering the (single precision) peak performances of the GPU, i.e. 1030 GFlops, and a memory bandwidths of

144 GB/s, are your results reasonable?

Table 2: GFlops of Fermi and laptop GPU (256 threads per block) using CUDA C

Data size n 1 024 256 000 1 225 728 3 072 000 6 404 864 16 776 960

G
P

U
-C

lu
s
te

r CPU GFlops

GPU
(kernel)

GFlops

GPU
(kernel+

3
)

GFlops

Table 3: Results for different launch configurations on Fermi using CUDA C

Threads per block

GPU (kernel)
GFlops

2. Impact of launch configuration

Now, set the vector size constantly to 1 225 728 and vary the number of threads per block. Always chose a multiple of

32, as NVIDIA threads are executed in groups of 32 (called a warp) internally. For Fermi the maximal number of

threads per block is 1024. Which is the best launch configuration? If you want, you can use Table 3 for writing down

your results.

3. Impact of memory throughput and number of floating point operations

Notice that our SAXPY program has only 2 floating point operations per 3 memory accesses and that one float is

represented by 4 Bytes. NVIDIA’s Fermi GPU has a theoretical peak memory bandwidth of 144 GB/s. Thus, we might

3
 „+“ denotes that the time for data transfer between CPU and GPU is included.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000000 10000000 15000000

vector size

 GFlops: GPU (kernel+)

Figure 2: GFlops of GPU kernel Figure 3: GFlops of GPU kernel (including CPU-GPU data transfer)

PPCES 2012: GPGPU Programming Lab

22.03.2012 Page 10 of 10

get at theoretical maximum of (144 GB/s) / (4 B) * 2/3 Flop = 24 GFlop/s. Compare this value to your measured values.

In general, a good way to improve the number of Flops is using shared memory. However, this is not applicable to our

program. Instead, we investigate the impact of more floating point operations per memory access. Therefore, add

“senseless” or even result-distorted operations to your GPU kernel (see comments in code). Make the same changes

to the serial SAXPY computation and adjust the getGFlops() method. What is the impact on GFlops and speedup?

9. Solutions

Solutions for all tasks are provided in the GPGPU Lab archive under solutions. There you can find a document

comprising the tasks and their solutions, the basic source files and batch scripts.

10. Appendix

10.1. NVIDIA GPU SDK under Linux

If you want to use NVIDIA’s GPU Computing SDK under Linux, you can login to our Linux GPU-Cluster and setup the CUDA

environment (see section 4.1). Copy the SDK from /rwthfs/rz/SW/nvidia to your home directory and make the CUDA

and OpenCL examples by:

make CUDA_INSTALL_PATH=$CUDA_ROOT

10.2. Getting started with Visual Studio & CUDA

Using Visual Studio IDE on the Windows laptops provided, it is a good idea to enable syntax highlighting for CUDA files

(*.cu) first. Open Visual Studio 2008 (!) and select Tools -> Options. Then, open text editor in the tree view on the

left, and click on File Extension. Type cu in the extension-box, set the editor to Microsoft Visual C++ and click

Add. Click Ok on the dialog box. Restart Visual Studio and the CUDA syntax will now be highlighted.

10.3. Compiling CUDA C Source Code on the Command Line (Windows)

For compilation without using Visual Studio IDE, go to the Windows command line (cmd) and set up the CUDA compiler

manually. For the latter, notice that nvcc needs a supported host compiler which is the Microsoft Visual Studio compiler

cl.exe on Windows. Therefore, you have to run the batch script vcvarsall.bat with the argument amd64 for setting up

the corresponding environment on the laptop. vcvarsall.bat can be found under C:\Program Files

(x86)\Microsoft Visual Studio 9.0\VC.

Then, you can compile your program:

nvcc [-arch=sm_<cc
2
>] saxpy.cu –Xcompiler “/DWIN32 /EHsc /W3 /nologo /O2 /Zi /MT”

