
PGI Accelerator Directive Syntax
Only one directive-name per directive statement.
Clause order is not significant and may be repeated
unless otherwise specified. Where applicable, clause
list arguments are comma-separated variable names,
array names, or subarrays with subscript ranges..

C
#pragma acc directive-name [clause [[,] clause]...] new-line

Fortran
!$acc directive-name [clause [[,] clause]...]

Compute Region Directive
A compute region directive surrounds the loops to execute
on the accelerator device.

C
#pragma acc region [clause [[,] clause]…] new-line
 { structured block }
Fortran
!$acc region [clause [[,] clause]…]
 structured block
!$acc end region

data clauses
copy(list)
copyin(list)
copyout(list)
local(list)
deviceptr(list)
update device(list)
update host(list)

list is a list of variables or arrays; see the Data Clauses
section.

other clauses
if(condition)When the condition is nonzero or true, the
compute region will execute on the accelerator; otherwise,
the region will execute on the host.
async[(handle)]
The region will execute asynchronously with host computa-
tion; a handle may be specified for use in a wait directive or
acc_async_wait call.

Data Region Directive
A data region directive defines a region of the program
within which data is replicated on the GPU.

C
#pragma acc data region clause [[,] clause]… new-line
 { structured block }

Fortran
!$acc data region clause [[,] clause]…
 structured block
!$acc end data region

data clauses
copy(list)
copyin(list)
copyout(list)
local(list)
deviceptr(list)
mirror(list)
update device(list)
update host(list)

Implicit Data Region
There is an implicit data region in each subprogram that
starts before the first executable statement and ends after
the last executable statement.

Declarative Data Directive
A declarative data directive is used to specify that data is
to be allocated in device memory for the duration of the
implicit data region of the subprogram.

C
#pragma acc clause [[,] clause]… new-line
#pragma acc function(name) clause [[,] clause]… new-line

Fortran
!$acc clause [[,] clause]…

clauses
copy(list)
copyin(list)
copyout(list)
local(list)
deviceptr(list)
device resident(list)
mirror(list)
reflected(list)

Update Directive
An update directive copies data from host memory to
data already allocated in device memory, or vice versa. An
update directive may appear in any data region including in
an implicit data region.

C
#pragma acc update clause [[,] clause]… new-line

Fortran
!$acc update clause [[,] clause]…

clauses
host(list)
device(list)
async [(handle)]

Device Present Directive
A device present directive finds an existing device copy of
data allocated in a data region surrounding the call to this
procedure.

C
#pragma acc device present(list)

Fortran
!$acc device present(list)

Compiler Options
-tp=targetaccelerator

Enable accelerator directives with the option
-ta=<targetaccelerator>[:<suboptions>]…

where <targetaccelerator> can be

host : compiles for host-only execution
nvidia: comp iles for NVIDIA GPUs
host,nvidia: PGI Unified Binary to execute on either the
host or an NVIDIA GPU

and <suboptions> can be

cc10, cc11, cc12, cc13, cc20: Generate code for
compute capability 1.0, 1.1, 1.2, 1.3 or 2.0; multiple
selections are valid.
cuda2.3, cuda3.0, cuda3.1, cuda3.2, cuda4.0:
Specify which NVIDIA toolkit version to use.
fastmath: Use fast (but lower precision) math routines.
keepbin: Keep the intermediate CUDA binary files.
keepptx: Keep the intermediate CUDA PTX files.
keepgpu: Keep the intermediate CUDA GPU source files.
time: Link in a simple kernel profiling library.

Example: -ta=host,nvidia:cc13,time

-tp=targetprocessor[,targetprocessor]...
Selects which x86 host processor(s) for which to compile.

Example: -tp=nehalem-64,barcelona-64

-Minfo or -Minfo=accel
Prints compiler informational messages.

-Minfo=ccff
Save the compiler informational messages in the execut-
able for use by PGPROF.

Profiling
% pgcollect a.out

Executes the program under control of a sampling runtime
profiler. Generates a file named pgprof.out containing
profile data.

% pgprof pgprof.out -exe a.out

The PGI Accelerator programming model includes a

collection of compiler directives to specify regions of code

in standard Fortran and C programs that can be offloaded

from a host CPU to an attached accelerator, providing

portability across operating systems and various types of

host CPUs and accelerators. The most fundamental PGI

Accelerator directive is a region directive, which declares

a compute region or data region that applies to the im-

mediately following structured block. A structured block

is a single statement or compound statement in C, or a

sequence of statements in Fortran with a single entry at the

top and a single exit at the bottom.

© 2010 - 2011 The Portland Group, Inc. All rights reserved.

PGI www.pgroup.com/accelerate
sales@pgroup.com

Quick Reference Card
PGI Accelerator™

®®

®

Wait Directive
A wait directive causes the program to wait until all asyn-
chronous activities associated with the given handle are
complete, or until all asynchronous activities are complete
if no handle is specified.

C
#pragma acc wait [(handle)]

Fortran
!$acc wait [(handle)]

Environment Variables
ACC_DEVICE device
Specifies whether to run the accelerator regions compiled
with PGI Unified Binary™ on the host or on an NVIDIA
GPU. Valid values are nvidia or host. Override in the
program with a call to acc_set_device.

ACC_DEVICE_NUM num
Specifies which device number to use. Override in the
program with a call to acc_set_device_num.

ACC_NOTIFY num
If the value is nonzero, a single line will be printed to
stderr for every accelerator kernel launched.

Conditional Compilation
The _ACCEL preprocessor macro is defined to have value
yyyymm when compiled with PGI Accelerator directives
enabled. The version described here is 201011.

Data Clauses
The description applies to the clauses used on compute
regions, data regions, and to the standalone declarative
data directives and executable update directives.

copy(list)
Allocates the data in list on the device and copies the data
from the host to the device when entering the region,and
copies the data from the device to the host when exiting
the region.

copyin(list)
Allocates the data in list on the device and copies the data
from the host to the device when entering the region.

copyout(list)
Allocates the data in list on the device and copies the data
from the device to the host when exiting the region.

local(list)
Allocates the data in list on the device, but does not auto-
matically copy the data between the host and device.

deviceptr(list)
C only; the list entries must be pointer variables that con-
tain device addresses, such as from cudaMalloc.

device resident(list)
Declares that the data in list are to be allocated only on the
device, and are accessible only within compute regions.

update device(list)
Copies the data from the host to the already-allocated
space on the device for the data in list, when entering a
nested data region, compute region, or at the update direc-
tive.

update host(list)
Copies the data from the already-allocated space on the
device to the host for the data in list, when exiting a nested
data region, compute region, or at the update directive.

mirror(list)
Fortran-only. Specifies that the data in the list should mir-
ror the allocation on the host; does not automatically copy
data.

reflected(list)
Data in list must be dummy arguments. Specifies that
data in list must already be allocated on the device by the
caller.

Loop Scheduling Directive
A loop scheduling directive applies to the immediately
following loop, and describes the loop parallelism to use
when mapping the loop for execution on the accelerator.

C
#pragma acc for [clause [[,] clause]…] new-line

Fortran
!$acc do [clause [[,] clause]…]

clauses
host [(width)]
parallel [(width)]
seq [(width)]
vector [(width)]
unroll(factor)
independent
private(list)
cache(list)

loop mapping clauses
The loop mapping clauses specify the mapping of loop-
level parallelism onto the accelerator parallelism. Multiple
clauses may be specified on a single loop, in which case all
but one must have a width clause.

host [(width)]
Execute the whole loop or width iterations of the loop on
the host.

parallel [(width)]
Execute the loop in parallel on all cores, or at most width
cores.

seq [(width)]
Execute the loop sequentially on the device.

vector [(width)]
Execute the loop in SIMD or vector mode with vectors of
size width.

unroll(factor)
Unroll factor iterations of the parallel, sequential or vector
loop. May appear after a parallel, seq, and/or vector clause.

other loop clauses
independent

Specifies that the loop iterations are data-independent,
and can be executed in parallel.

private(list)
Allocates one copy of the data in list for each iteration of
the loop.

cache(list)
Prioritizes the data in list for placement in the highest level
of the data cache.

Runtime Routines
Prototypes or interfaces for the runtime library routines,
along with datatypes and enumeration types, are
available as follows.

C
#include “accel.h”

Fortran
use accel_lib or #include “accel_lib.h”

acc_get_num_devices(devicetype)
Returns the number of devices of the specified type; the
only valid device type is acc_device_nvidia.

acc_set_device(devicetype)
Sets the device type to use to execute compute regions;
this assumes that the code has been compiled with PGI
Unified Binary. The valid device types are
acc_device_nvidia or acc_device_host.

acc_get_device()

Returns the device type that will be used to execute the
next accelerator region.

acc_set_device_num(devicenum, devicetype)
Sets the device number of the given type to use to ex-
ecute accelerator regions.

acc_get_device_num(devicetype)
Returns the device number of the given type that will be
used to execute the next accelerator compute region.

acc_async_test(handle)
Returns nonzero or .TRUE. if all asynchronous activities
associated with the given handle have been completed;
returns zero or .FALSE. otherwise.

acc_async_wait(handle)
Waits until all asynchronous activities associated with the
given handle have been completed.

acc_init(devicetype)
Initializes the runtime library for that device type; the
default is to initialize when the first accelerator region is
entered.

acc_shutdown(devicetype)
Disconnects the program from the accelerator device; the
next accelerator region will have to reinitialize the device.

acc_on_device(devicetype)
This is used in accelerator compute regions to take differ-
ent execution paths depending on whether the program is
running on an accelerator or on the host. The argument
must be a compile-time constant.

