

General Syntax
C
#pragma acc directive [clause [[,] clause]...] new-line

FORTRAN
!$acc directive [clause [[,] clause]...]
Except for executable and declarative directives, OpenACC
directives apply to the immediately following statement, loop or
structured block.

Parallel Construct
An accelerator parallel construct launches a number of gangs
executing in parallel, where each gang may support multiple
workers, each with vector or SIMD operations.

C
#pragma acc parallel [clause [[,] clause]…] new-line
	 { structured block }

FORTRAN
!$acc parallel [clause [[,] clause]…]
	 structured block
!$acc end parallel

Any data clause is allowed.

OTHER CLAUSES
if(condition)

When the condition is nonzero or true, the parallel region will
execute on the accelerator; otherwise, it will execute on the host.
async(expression)

The parallel region executes asynchronously with the host.
num_gangs(expression)

Controls how many parallel gangs are created.
num_workers(expression)

Controls how many workers are created in each gang.
vector_length(expression)

Controls the vector length on each worker.
private(list)

A copy of each variable in list is allocated for each gang.
firstprivate(list)

A copy of each variable in list is allocated for each gang and
initialized with the value from the host.
reduction(operator:list)

A private copy of each variable in list is allocated for each gang.
The values for all gangs are combined with the operator at the
end of the parallel region. Valid C and C++ operators are +, *,
max, min, &, |, ^, &&, ||. Valid Fortran operators are +,
*, max, min, iand, ior, ieor, .and., .or., .eqv.,
.neqv.

Version 1.0, November 2011

All four companies intend to work within OpenMP organization to merge OpenACC
and create a common specification that extends OpenMP to support accelerators.

The OpenACC™ API
QUICK REFERENCE GUIDE

The OpenACC Application Program Interface
describes a collection of compiler directives to
specify loops and regions of code in standard
C, C++ and Fortran to be offloaded from a
host CPU to an attached accelerator, providing
portability across operating systems, host CPUs
and accelerators.

Most OpenACC directives apply to the
immediately following structured block or loop;
a structured block is a single statement or a
compound statement (C or C++) or a sequence
of statements (Fortran) with a single entry point
at the top and a single exit at the bottom.

acc_shutdown(devicetype)
Disconnects this host thread from the accelerator device.
acc_on_device(devicetype)

In an OpenACC parallel or kernels region, this is used
to take different execution paths depending on whether the
program is running on an accelerator or on the host.
acc_malloc(size_t)

Returns the address of memory allocated on the accelerator
device.
acc_free(void*)

Frees memory allocated by acc_malloc.

Implicit Data Region
An implicit data region is created at the start of each procedure
and ends after the last executable statement.

Declare Directive
A declare directive is used to specify that data is to be al-
located in device memory for the duration of the implicit data
region of the subprogram.

C
#pragma acc declare [clause [[,] clause]…]
new-line

FORTRAN
!$acc declare [clause [[,] clause]…]
Any data clause is allowed.

OTHER CLAUSES
acc_resident(list)

Declares that the variable in list are to be allocated on the ac-
celerator device when this implicit data region is entered.

Environment Variables
ACC_DEVICE device

Specifies which device type to which to connect. This can be
overridden with a call to acc_set_device_type.
ACC_DEVICE_NUM num

Specifies which device number to which to connect. This
can be overridden with a call to acc_set_device_num.

Conditional Compilation
The _OPENACC preprocessor macro is defined to have
value yyyymm when compiled with OpenACC directives
enabled. The version described here is 201111.

Wait Directive
The wait directive causes the host program to wait for comple-
tion of asynchronous accelerator activities. With no expression, it
will wait for all outstanding asynchronous activities.

C
#pragma acc wait [(expression)] new-line

FORTRAN
!$acc wait [(expression)]

Runtime Library Routines
Prototypes or interfaces for the runtime library routines along with
datatypes and enumeration types are available as follows:

C
#include “openacc.h”

FORTRAN
use openacc or #include “openacc_lib.h”
acc_get_num_devices(devicetype)

Returns the number of accelerator devices of the specified
type.
acc_set_device_type(devicetype)

Sets the accelerator device type to use for this host thread.
acc_get_device_type()

Returns the accelerator device type that is being used by this
host thread.
acc_set_device_num(devicenum, devicetype)

Sets the accelerator device number to use for this host thread..
acc_get_device_num(devicetype)

Returns the accelerator device number that is being used by
this host thread.
acc_async_test(expression)

Returns nonzero or .TRUE. if all asynchronous activities with the
given expression have been completed; otherwise returns zero
or .FALSE.
acc_async_test_all()

Returns nonzero or .TRUE. if all asynchronous activities have
been completed; otherwise returns zero or .FALSE.
acc_async_wait(expression)

Waits until all asynchronous activities with the given expression
have been completed.
acc_async_wait_all()

Waits until all asynchronous activities have been completed.
acc_init(devicetype)

Initialized the runtime system and sets the accelerator device
type to use for this host thread.

© 2011 OpenACC-standard.org all rights reserved.

PGI®

Data Clauses
The description applies to the clauses used on parallel constructs,
kernels constructs, data constructs, declare constructs, and
executable update directives.

copy(list)
Allocates the data in list on the accelerator and copies the data
from the host to the accelerator when entering the region, and
copies the data from the accelerator to the host when exiting
the region.

copyin(list)
Allocates the data in list on the accelerator and copies the data
from the host to the accelerator when entering the region.

copyout(list)
Allocates the data in list on the accelerator and copies the data
from the accelerator to the host when exiting the region.

create(list)
Allocates the data in list on the accelerator, but does not copy
data between the host and device.

present(list)
The data in list must be already present on the accelerator, from
some containing data region; that accelerator copy is found
and used.

present_or_copy(list)
If the data in list is already present on the accelerator from some
containing data region, that accelerator copy is used; if it is not
present, this behaves like the copy clause.

present_or_copyin(list)
If the data in list is already present on the accelerator from some
containing data region, that accelerator copy is used; if it is not
present, this behaves like the copyin clause.

present_or_copyout(list)
If the data in list is already present on the accelerator from some
containing data region, that accelerator copy is used; if it is not
present, this behaves like the copyout clause.

present_or_create(list)
If the data in list is already present on the accelerator from some
containing data region, that accelerator copy is used; if it is not
present, this behaves like the create clause.

deviceptr(list)
C and C++; the list entries must be pointer variables that contain
device addresses, such as from acc_malloc.

Fortran: the list entries must be dummy arguments, and may
not have the pointer, allocatable or value attributes.

Host Data Construct
A host_data construct makes the address of device data avail-
able on the host.

C
#pragma acc host_data [clause [[,] clause]...] new-line
 { structured block }

FORTRAN
!$acc host_data [clause [[,] clause]...]
 structured block
!$acc end host_data

CLAUSES
use_device(list)

Directs the compiler to use the device address of any entry in list,
for instance, when passing a variable to procedure.

Loop Construct
A loop construct applies to the immediately following loop or
nested loops, and describes the type of accelerator parallelism to
use to execute the iterations of the loop.

C
#pragma acc loop [clause [[,] clause]…] new-line

FORTRAN
!$acc loop [clause [[,] clause]…]

CLAUSES
collapse(n)

Applies this directive to the following n nested loops.

seq
Executes this loop sequentially on the accelerator.

private(list)
A copy of each variable in list is created for each iteration of the
loop.

reduction(operator:list)
See reduction clause for parallel construct.

Clauses unique to an OpenACC parallel region

gang
Shares the iterations of this loop across the gangs of the
parallel region.

worker
Shares the iterations of this loop across the workers of the gang.

vector
Executes the iterations of this loop in SIMD or vector mode.

Clauses unique to an OpenACC kernels construct

gang [(num_gangs)]
Executes the iterations of the loop in parallel across at most
num_gangs gangs.

worker [(num_workers)]
Executes the iterations of the loop in parallel across at most
num_workers workers of a single gang.

vector [(vector_length)]
Executes the iterations of the loop in SIMD or vector mode, with
a maximum vector_length.

independent
Specifies that the loop iterations are data-independent and can
be executed in parallel, overriding compiler dependence analysis.

Cache Construct
A cache construct may be added at the top of a loop. The elements
or subarrays in the list are cached in the software-managed data
cache.

C
#pragma acc cache(list)

FORTRAN
!$acc cache(list)

Update Directive
The update directive copies data between the host memory and
data allocated in device memory, or vice versa. An update direc-
tive may appear in any data region, including an implicit data region.

C
#pragma acc update [clause [[,] clause]…]
new-line

FORTRAN
!$acc update [clause [[,] clause]…]

CLAUSES
host(list)

Copies the data from the accelerator to the host.

device(list)
Copies the data from the host to the accelerator.

if(condition)
When the condition is nonzero or true, no data will be moved to
or from the accelerator.

async(expression)
Data movement between the host and accelerator will occur
asynchronously with the host; the expression value may be used
in a wait directive or API call.

Kernels Construct
An accelerator kernels construct surrounds loops to be execut-
ed on the accelerator, typically as a sequence of kernel operations.

C
#pragma acc kernels [clause [[,] clause]…] new-line
	 { structured block }

FORTRAN
!$acc kernels [clause [[,] clause]…]
	 structured block
!$acc end kernels

Any data clause is allowed.

OTHER CLAUSES
if(condition)

When the condition is nonzero or true, the kernels region will
execute on the accelerator; otherwise, it will execute on the host.
async(expression)

The kernels region executes asynchronously with the host.

Data Construct
An accelerator data construct defines a region of the program
within which data is accessible by the accelerator.

C
#pragma acc data [clause[[,] clause]…] new-line
	 { structured block }

FORTRAN
!$acc data [clause[[,] clause]…]
	 structured block
!$acc end data

Any data clause is allowed.

OTHER CLAUSES
if(condition)

When the condition is nonzero or true, no data will be allocated
or moved to or from the accelerator.
async(expression)

Data movement between the host and accelerator will occur
asynchronously with the host.

