

PPCES 2012: Serial Tuning Lab Exercises

14.03.20112 Page 1 of 7

PPCES 2012: Serial Tuning Lab
Exercises

March 19, 2012
Tim Cramer, Frank Robel, Daniel D’Abramo
{cramer,robel,dabramo}@rz.rwth-aachen.de

0. Preparations

 Login to one of our frontend nodes, e.g.:
$ ssh cluster.rz.rwth-aachen.de

 Download serial_tuning2012.tar.gz from the PPCES Homepage (e.g., into your $HOME
directory).

 Untar the archive:
$ tar xzf serial_tuning.tar.gz

 Change into the lab directory:
$ cd serial_tuning

Since we all work on the same frontends the performance measurements can differ between two

runs. Execute the examples several times to get proper results or connect to another frontend.

1. Norm Calculation of a Matrix

This first small exercise performs the calculation of ||·||1 and ||.||∞, which are defined by

‖ ‖ ∑ | |

 (“maximum column sum”)

‖ ‖ ∑ | |

 (“maximum row sum”),

where ()
 is a real matrix. The example is written in C++ or Fortran and can

be found in the directory norm. You can specify different dimensions n for the matrix as input

parameter:

$ cd norm

$ cd C++

or

$ cd Fortran

$ make

$./norm n

We have prepared the exercises in C/C++ and Fortran. Please choose your favorite language.
Begin with section 1.1 for C++ and with section 1.2 for Fortran.

PPCES 2012: Serial Tuning Lab Exercises

19.03.2012 Page 2 of 7

1.1. C++

1.1.1. Implement Row-Wise calculated Norm

Please realize the row wise calculation of ‖ ‖ by implementing the function

norm1_row_wise(double** const A, const int n). What is the performance compared

to the calculation of ‖ ‖ realized in norm_max(double** const A, const int n)? What

could be the reason for the difference?

1.1.2. Implement Column-Wise Norm

As we have seen the run time difference between the calculations of ‖ ‖ and ‖ ‖ is significant,
although the number of floating point operations are the same. But in the row-wise norm1
calculation the memory access pattern is not optimal concerning the memory access pattern of

C++. Please implement the function norm1_col_wise(double** const A, const int n).

Use the helper array double* colsums to store the sum for each column. What performance

can you reach now? What is the speedup for different matrix sizes?

1.2. FORTRAN

1.2.1. Implement the Column-Wise calculated Norm

Please realize the column wise calculation of ‖ ‖ by implementing the function max_norm(A,

n) in norm.f90 What is the performance compared to the calculation of ‖ ‖ realized in

norm1(A,n)? What could be the reason for the difference?

1.2.2. Implement Column-Wise calculated Norm

As we have seen the run time difference between the calculations of ‖ ‖ and ‖ ‖ is significant,
although the number of floating point operations are the same. But in the column-wise max_norm
calculation the memory access pattern is not optimal concerning the memory access pattern of

Fortran. Please implement the function max_norm1_col_wise(A, n). Use the helper array

col_wise_row_sum to store the sum for each column. What performance can you reach now?

What is the speedup for different matrix sizes?

1.3. Compare Different Compilers (C++ and Fortran)

In many cases the performance gap of the executables build with different compilers can be really
big. Try to switch the compiler, rebuild the application and compare the performance for the Intel,
GNU, PGI and Oracle (Sun) compiler for different matrix sizes, e.g.:

$ module switch intel gcc
$ make clean
$ make
$./norm 5000

Hint: To get a list of the available compiler type module avail. All compilers are installed in

different versions. To find out which compiler is actually loaded type module list. The modules

you need are gcc, intel, pgi and studio. Please use module switch to change the compiler!

Write the results into

Table 1 if you used the C++ version and in Table 2 for Fortran. Note: Since you are not alone on
the frontends it could be that the performance is distorted by the other users! So if there are some
very unexpected measurements, please repeat the execution and take the best result.

PPCES 2012: Serial Tuning Lab Exercises

14.03.20112 Page 3 of 7

Table 1: Compiler Performance C++

Compiler
Dimension N Max-Norm

(MFlops)
1-Norm (col)
(MFlops)

1-Norm(row)
(MFlops)

Intel 12.1

100

5000

PGI 11.7

100

5000

GNU 4.6

100

5000

Oracle(Sun)
12.3

100

5000

Table 2: Compiler Performance Fortran

Compiler
Dimension N 1-Norm

(MFlops)
Max-Norm (row)
(MFlops)

M-Norm (col)
(MFlops)

Intel 12.1

100

5000

PGI 11.7

100

5000

GNU 4.6

100

5000

Oracle(Sun)
12.3

100

5000

Note: It is always a good idea to compare different compilers in different versions, but the results of
this measurements do not allow a general statement like “Compiler of vendor A is better than
compiler of vendor B”. It strongly depends on many different parameters (e.g., the compiler flags,
the compiler version, the used hardware etc.).

PPCES 2012: Serial Tuning Lab Exercises

19.03.2012 Page 4 of 7

2. Performance of a Vector-Matrix-Multiplication

In the second exercise a Vector-Matrix-Multiplication

for the C example and a Matrix-Vector-Mulitplication

for the Fortran should be done, where , and . The example can can be

found in the directory vecmat/{C++|Fortran}, depending on the language you want to use.

In the C version the matrix A is now stored as contiguous block in the memory (row-by-row), in
contrast to the example in exercise 1. This means that you have to calculate the offset for a new
row by multiplying with n. This has the advantage that you do not need to dereference the pointer
twice.

Continue with section 2.1 if you prefer C or go to section 2.2 for Fortran.

2.1. C

2.1.1. Memory Access Pattern (C)

In the function vxm_ref(int m, int n, const double* A, const double* x,

double* y) in the file vecmat.c the column-wise Vector-Matrix-Multiplication has to be done.

Add the missing line using the offset for A to make this operation work. What is the performance

impact of this access order concerning the storage order of C / C++? Implement the function

vxm_order(int m, int n, const double* A, const double* x, double* y) to

reach a better memory access pattern by interchanging the loops and compare the performance

(MFlop/s).

2.1.2. Compiler Optimization (C)

If you load a compiler in the RWTH Environment (e.g., $ module load intel) some important

compiler specific variables are set. One of them is FLAGS_FAST. You can use this flag to use

compiler optimizations during the build process. Modify the C_FLAGS variable in the Makefile to

enable this. What is the performance impact? Is the optimization of vxm_order() still more

efficient compared to vxm_ref()? Hint: To see what the compiler is doing you can get very

detailed compiler feedback (e.g., for the Intel compiler with the flag -opt-report). Most modern

compilers are very smart nowadays, but in some cases we expect them to do some optimizations

they cannot do as we will see in the exercise. What optimization techniques are used for the

performance relevant parts?

PPCES 2012: Serial Tuning Lab Exercises

14.03.20112 Page 5 of 7

2.1.3. Vectorization (C)

A very powerful compiler optimization is vectorization. This means that in case of loop independent
iterations several operations can be executed in parallel by using special CPU instructions. Briefly
spoken the compiler tries to unroll the loop and combines this technique with the generation of
packed SIMD (Single Instruction Multiple Data) instructions. But in some cases you need to help
the compiler to reach this. This is especially true in C / C++ because of pointer aliasing. To
determine if the compiler was able to vectorize one of the loops you can add a c flag to C_FLAGS
in the Makefile to get a detailed report (e.g., for the Intel Compiler “-vec-report3”).

a. Find out in which of the vxm_* functions the compiler is successful! What could be the
reason why in one case the compiler is able to vectorize and in the other not?

b. The C99 standard defines a special restrict keyword to limit the effects of pointer

aliasing. Please implement the column-wise function vxm_restrict(…) using the

restrict keyword. Can the loop be vectorized now? What could be the reason (use the
compiler feedback!)? How does the performance change? Hint: For the Intel Compiler

you have to add the –restrict, for the gcc –std=c99 flag as well. We recommend

using the Intel compiler.

2.1.4. MKL (C)

For many basic operations highly optimized libraries are available. In the area of HPC the

LAPACK- / BLAS-Routines are widely used. The reference manual to the Intel implementation

(MKL) can be found here:

http://software.intel.com/sites/products/documentation/hpc/composerxe/en-

us/mklxe/mkl_manual_win_mac/index.htm.

These routines are implemented in Fortran. Although you can call these functions directly from C /

C++, it is strongly recommended to use corresponding interface called CBLAS. An example of

using the CBLAS can be found in the clusters example collection in the directory

$PSRC/psr/usecblas.c.

2.1.5. Modify the Makefile such that the environment variables FLAGS_MATH_INCLUDE

and FLAGS_MATH_LINKER are used for compiling / linking and include the

corresponding header in vecmat.c. Hint: Since the Intel Complier comes with the

MKL included this step might be not necessary, but keep it in mind, if you want to use

a different compiler! For the other compiler you additional need to load the intelmkl

module.

2.1.6. Change the vxm_mkl(…) routine such that it calls cblas_dgemv() from the Intel

MKL. Hint: This routines performs a matrix-vector operation. So you need to

transform the matrix for performing a vector-matrix-multiplication.

2.1.7. How much better is the Intel implementation compared to your own?

2.1.8. The theoretical peak performance of a machine can be calculated with:

What is the theoretical peak performance of the machine you are using? How much

do you reach with the optimized versions of the matrix-vector-multiplication? Hint:

Use the /proc/cpuinfo file to find the needed information.

NOTE: The Intel MKL can run in parallel depending on the value of the environment variable

OMP_NUM_THREADS. If set to a value bigger than one, the comparison to your serial vxm

version might not be fair.

http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/mklxe/mkl_manual_win_mac/index.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/mklxe/mkl_manual_win_mac/index.htm

PPCES 2012: Serial Tuning Lab Exercises

19.03.2012 Page 6 of 7

2.2. Fortran

2.2.1. Memory Access Pattern (Fortran)

In the function mxv_ref (m,n,A,x,y) in the file vecmat.f90 the row-wise Matrix-Vector-

Multiplication has to be done. What is the performance impact of this access order concerning the

storage order of Fortran? Implement the function mxv_order(m, n, A, x, y) to reach a

better memory access pattern by interchanging the loops and compare the performance (MFlop/s).

2.2.2. Compiler Optimization (Fortran)

If you load a compiler in the RWTH Environment (e.g., $ module load intel) some important

compiler specific variables are set. One of them is FLAGS_FAST. You can use this flag to use

compiler optimizations during the build process. Modify the F_FLAGS variable in the Makefile to

enable this. What is the performance impact? Is the optimization of mxv_order() still more

efficient compared to mxv_ref()? Hint: To see what the compiler is doing you can get very

detailed compiler feedback (e.g., for the Intel compiler with the flag -opt-report). Most modern

compilers are very smart nowadays, but in some cases we expect them to do some optimizations

they cannot do as we will see in the exercise. What optimization techniques are used for the

performance relevant parts?

2.2.3. Vectorization (Fortran)

A very powerful compiler optimization is vectorization. This means that in case of loop independent
iterations several operations can be executed in parallel by using special CPU instructions. Briefly
spoken the compiler tries to unroll the loop and combines this technique with the generation of
packed SIMD (Single Instruction Multiple Data) instructions. But in some cases you need to help
the compiler to reach this. Find out in which of the mxv_* functions are vectorized successful for

different optimization levels. For the vectorization of mxv_ref() a combination of optimization is

necessary. Which is it?

Hint: You can use -vec-report3 for more compiler Feedback

2.2.4. MKL (Fortran)

For many basic operations highly optimized libraries are available. In the area of HPC the

LAPACK- / BLAS-Routines are widely used. The reference manual to the Intel implementation

(MKL) can be found here:

http://software.intel.com/sites/products/documentation/hpc/composerxe/en-

us/mklxe/mkl_manual_win_mac/index.htm.

These routines are implemented in Fortran. An example of using the BLAS within a C program can

be found in the clusters example collection in the directory $PSRC/psr/usecblas.c.

2.2.5. Modify the Makefile such that the environment variables FLAGS_MATH_INCLUDE

and FLAGS_MATH_LINKER are used for compiling / linking. Hint: Since the Intel

Complier comes with the MKL included this step might be not necessary, but keep it

in mind, if you want to use a different compiler! For the other compiler you additional

need to load the intelmkl module.

2.2.6. Change the mxv_mkl(…) routine such that it calls dgemv() from the Intel MKL.

2.2.7. How much better is the Intel implementation compared to your own?

2.2.8. The theoretical peak performance of a machine can be calculated with:

http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/mklxe/mkl_manual_win_mac/index.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/mklxe/mkl_manual_win_mac/index.htm

PPCES 2012: Serial Tuning Lab Exercises

14.03.20112 Page 7 of 7

What is the theoretical peak performance of the machine you are using? How much

do you reach with the optimized versions of the matrix-vector-multiplication? Hint:

Use the /proc/cpuinfo file to find the needed information.

NOTE: The Intel MKL can run in parallel depending on the value of the environment variable

OMP_NUM_THREADS. If set to a value bigger than one, the comparison to your serial mxv

version might not be fair.

3. Solutions

For all source file you have to modify there is a *.solu or *.solution file in the corresponding
directory. Feel free to compare it with your own solution.

