

PPCES 2012: Serial Tuning Lab Exercises

19.03.2012 Page 1 of 5

PPCES 2012: Serial Tuning Lab
Exercises

March 19, 2012
Tim Cramer, Frank Robel, Daniel D’Abramo
{cramer,robel,dabramo}@rz.rwth-aachen.de

0. Preparations

 Login to the Windows system (please refer to the additional handout):
cluster-win.rz.rwth-aachen.de

 Download serial_tuning2012.tar.gz from the PPCES Homepage (e.g., into your $HOME
directory):
http://www.rz.rwth-aachen.de/ppces

 Untar the archive. (e.g. with the program 7zip)

 Change into the lab directory:

 Do not open the project by double-clicking the Visual Studio Project File! Do the following
instead:

o Click Start, type “Intel 64 Visual Studio 2010 mode” into the command

line and open the first one.

o Start Visual Studio 2010 by typing devenv to the command line.

o Open the project: File -> Project/Solution.

PPCES 2012: Serial Tuning Lab Exercises

19.03.2012 Page 2 of 5

Since we all work on the same frontends the performance measurements can differ between two

runs. Execute the examples several times to get proper results or connect to another frontend.

1. Norm Calculation of a Matrix

This first small exercise performs the calculation of ||·||1 and ||.||∞, which are defined by

‖ ‖ ∑ | |

 (“maximum column sum”)

‖ ‖ ∑ | |

 (“maximum row sum”),

where ()
 is a real matrix. The example is written in C++ and can be found in

the directory norm/C++. You can specify different dimensions n for the matrix as input parameter:

Open Project / Properties in the menu. In the next window you can configure the command

line parameter in the field: Configuration Properties / Debugging / Command

Arguments.

1.1. Implement Row-Wise calculated Norm

Please perform the row wise calculation of ‖ ‖ by implementing the function

norm1_row_wise(double** const A, const int n). How is the performance compared

to the calculation of ‖ ‖ performed by norm_max(double** const A, const int n)?

What could be the reason for the difference?

1.2. Implement Column-Wise Norm

As we have seen the run time difference between the calculation of ‖ ‖ and ‖ ‖ is significant,
although the number of floating point operations are the same. But in the row-wise norm1
calculation the memory access pattern is not optimal in regard to the memory access pattern of

C++. Please implement the function norm1_col_wise(double** const A, const int n).

Use the helper array double* colsums to store the sum for each column. Which performance

can you reach now? What is the speedup for different matrix sizes?

1.3. Compare Different Compilers

In many cases the performance gap between the executables built with different compilers can be
really big. Try to switch the compiler, rebuild the application and compare the performance for the
Intel and Microsoft compiler for different matrix sizes.

Hint: We have an existing Intel project. If you want to use the Visual Studio compiler, the project

has to be converted. This can be done by right-clicking the project and selecting the “Intel C++

Composer XE 2011” / “Use Visual C++”

Write the results into

Table 1. Note: Since you are not alone on the frontends the performance could be distorted by

other users! So if there are some really unexpected measurements, please repeat the execution

and take the best result.

PPCES 2012: Serial Tuning Lab Exercises

19.03.2012 Page 3 of 5

Table 1: Compiler Performance

Compiler
Dimension N Max-Norm

(MFlops)
1-Norm (row)
(MFlops)

1-Norm(col)
(MFlops)

Intel 12.0

100

5000

Microsoft 2010

100

5000

Note: It is always a good idea to compare different compilers in different versions, but the results of
this measurements do not allow a general statement like “Compiler of vendor A is better than
compiler of vendor B”. It strongly depends on many different parameters (e.g., the compiler flags,
the compiler version, the used hardware etc.).

2. Performance of a Vector-Matrix-Multiplication

In the second exercise a Vector-Matrix-Multiplication should be done:

 ,

where , and . The example, which can be found in the directory

vecmat\C++, is now written in C. In contrast to the example in exercise 1 the matrix A is now

stored as a contiguous block in the memory (row-by-row). This means that you have to calculate
the offset for a new row by multiplying it with n. This has the advantage that you do not need to
dereference the pointer twice.

2.1. Memory Access Pattern

In the function vxm_ref(int m, int n, const double* A, const double* x,

double* y) in the file vecmat.c the column-wise Vector-Matrix-Multiplication has to be done.

Add the missing line using the offset for A to make this operation work. What is the performance

impact of this access order concerning the storage order of C / C++? Implement the function

vxm_order(int m, int n, const double* A, const double* x, double* y) to

reach a better memory access pattern by interchanging the loops and compare the performance

(MFlop/s).

2.2. Compiler Optimization

If you switch between different Solution Configurations and Solution Platforms some

important compiler specific variables are set. For example the level of optimization is chosen:

Solution Configuration Level of Optimization

PPCES 2012: Serial Tuning Lab Exercises

19.03.2012 Page 4 of 5

Debug Disabled (/Od)

Release Maximize Speed (/O2)

You can use the Release settings together with the x64 Platform. What is the performance

impact? Is the optimization of vxm_order() still more efficient compared to vxm_ref()? Hint:

To see what the compiler is doing you can get very detailed compiler feedback (e.g., for the Intel

compiler with the flag /Qopt-report. You can set this flag in Project / Properties /

Configuration Properties / C/C++ / Command Line). Most modern compilers are very

smart nowadays, but in some cases we expect them to do some optimizations they cannot do as

we will see in the exercise. What optimization techniques are used for the performance-relevant

parts?

2.3. Vectorization

A very powerful compiler optimization is vectorization. This means that in case of loop independent
iterations several operations can be executed in parallel by using special CPU instructions. Briefly
spoken the compiler tries to unroll the loop and combines this technique with the generation of
packed SIMD (Single Instruction Multiple Data) instructions. But in some case you need to help the
compiler to do this. This is especially true in C / C++ because of pointer aliasing. To determine if
the compiler was able to vectorize one of the loops you can add a c flag to get a detailed report
(e.g., for the Intel Compiler “/Qvec-report3”).

2.3.1. Find out in which of the vxm_* functions the compiler is successful! What could be
the reason why the compiler is able to vectorize in one case but not in the other one?

2.3.2. The C99 standard defines a special restrict keyword to limit the effects of pointer

aliasing. Please implement the column-wise function vxm_restrict(…) using the

restrict keyword. Can the loop be vectorized now? What could be the reason (use the
compiler feedback!)? How much does the performance change? Hint: For the Intel

Compiler you have to add the flags /Qrestrict and /fp:fast.

2.4. MKL

For many basic operations highly optimized libraries are available. In the area of HPC the

LAPACK- / BLAS-Routines are widely used. The reference manual to the Intel implementation

(MKL) can be found here:

http://software.intel.com/sites/products/documentation/hpc/composerxe/en-

us/mklxe/mkl_manual_win_mac/index.htm.

These routines are implemented in Fortran. Although you can call these functions directly from C /

C++, it is strongly recommended to use corresponding interface called CBLAS. An example of

using the CBLAS can be found in the cluster’s example collection in the directory

P:\psr\usecblas.c.

2.4.1. Modify the Project Properties such that Intel MKL Sequential can be used for

compiling / linking and include the corresponding header in vecmat.c. Hint: Open

Project / Properties / Configuration Properties / Intel

Performance Libraries and choose MKL Sequential.

2.4.2. Change the vxm_mkl(…) routine such that it calls cblas_dgemv() from the Intel

MKL. Hint: This routine performs a matrix-vector operation. So you need to transform

the matrix to perform a vector-matrix-multiplication.

2.4.3. How much better is the Intel implementation compared to your own?

2.4.4. The theoretical peak performance of a machine can be calculated with:

http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/mklxe/mkl_manual_win_mac/index.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/mklxe/mkl_manual_win_mac/index.htm

PPCES 2012: Serial Tuning Lab Exercises

19.03.2012 Page 5 of 5

What is the theoretical peak performance of the machine you are using? How much

do you achieve with the optimized versions of the matrix-vector-multiplication? Hint:

Some of this information can be found in System (click Windows + Pause) and in

the Task Manager. The Flops/cycle are depending on the use hardware. In our case

it is equal 4.

3. Solutions

For all source file you have to modify there is a *.solu or *.solution file in the corresponding
directory. Feel free to compare it with your own solution.
Hint:

 Right click on the file that should be changed and choose Exclude From Project. (e.g.

vecmat.c)

 Right click on the folder Source Files and choose Add / Existing Item … (e.g.

vecmat.solu.c)

Notice:
Using vecmat.solu.c also need a couple of changes in Project Properties: You have to use the Intel

Compiler with Release Configuration, the Intel MKL, and some additional c flags: /Qrestrict
/fp:fast

