

terboven@rz.rwth-aachen.de OpenMP_Exercises.docx

1 / 10 Introduction to OpenMP: Exercises and Handout

Introduction to OpenMP
Christian Terboven
Center for Computing and Communication, RWTH Aachen University
Seffenter Weg 23, 52074 Aachen, Germany
terboven@rz.rwth-aachen.de

Abstract
This document guides you through the hands-on examples and exercises. Please follow the
instructions given during the lecture / exercise session on how to log in to the workstations and how
to start the virtual machine, or how to log in to the Linux and / or Windows Cluster. You can run all
hands-on examples and exercises either on your virtual machine or on the cluster at RWTH Aachen
University. In case you are using the Linux cluster, please execute the following commands to
download the exercises, extract them to your $HOME directory and initialize the environment for the
use of the Sun Studio compilers:

 cd $HOME
 wget http://support.rz.rwth-aachen.de/public/openmp.ex.tar.gz
 tar –xzvf openmp.ex.tar.gz
 module load studio

In case you are using the Windows cluster, please copy the directory openmp_exercises.vs2008
from the P:\PPCES_2010 directory to your $HOME directory H:\.

If you need help or have any question please do not hesitate to ask.

The prepared makefiles provide several targets to compile and execute the code using the Sun Studio
compilers on Linux:

• debug: The code is compiled with OpenMP enabled, still with full debug support.
• release: The code is compiled with OpenMP and several compiler optimizations enabled,

should not be used for debugging.
• run: Execute the compiled code. The OMP_NUM_THREADS environment variable should be set

in the calling shell.
• clean: Clean any existing build files.

We also provide Visual Studio 2008 solution files using the Intel C/C++ compilers, since Visual Studio
2008 does not support the new features of OpenMP 3.0 and the Intel compiler integration is not yet
available for Visual Studio 2010.

http://support.rz.rwth-aachen.de/public/openmp.ex.tar.gz�

terboven@rz.rwth-aachen.de OpenMP_Exercises.docx

2 / 10 Introduction to OpenMP: Exercises and Handout

1 Hello World
Hands-on: Go to the hello directory. Compile the hello.c code via ‘make [debug|release]’ or
using the Visual Studio IDE and execute the resulting executable. Don’t forget to set
‘OMP_NUM_THREADS=procs’, where procs denotes the number of threads to be used.

Exercise 1: Change the code that (a) the thread number (thread id) and (b) the total number of
threads in the team are printed. Re-compile and execute the code in order to verify your changes.

In order to print a decimal number, use the %d format specifier with printf():

int i1 = value;
int i2 = other_value;
printf(“Value of i1 is: %d, and i2 is: %d”, i1, i2);

Exercise 2: In which order did you expect the threads to print out the Hello World message? Did your
expectations meet your observations? If not, is that wrong?

2 Parallelization of Pi (numerical integration)
Go to the pi directory. This code computes Pi via numerical integration. Compile the pi.c code via
‘make [debug|release]’ or the Visual Studio IDE and execute the resulting executable. Don’t
forget to set ‘OMP_NUM_THREADS=procs’, where procs denotes the number of threads to be used.

Exercise 1: Parallelize the Pi code with OpenMP. The compute intensive part resides in one single
loop in the CalcPi() function, thus the parallel region should be placed there as well. Re-compile
and execute the code in order to verify your changes.

Note: Make sure that your code does not contain any data race – that is two threads writing to the
same shared variable without proper synchronization. During the second lecture day we will see how
to verify OpenMP programs automatically.

Exercise 2: If you work on a multicore system (e.g. the cluster at RWTH Aachen University) measure
the speedup and the efficiency of the parallel Pi program.

Threads Runtime [sec] Speedup Efficiency
1
2
3
4
6
8

terboven@rz.rwth-aachen.de OpenMP_Exercises.docx

3 / 10 Introduction to OpenMP: Exercises and Handout

3 Parallelization of the Matrix- Multiplication
Please note

Exercise 1: Parallelize the Matrix-Multiplication with OpenMP. Compare the performance you can
achieve with one, two, four and eight threads to the performance delivered by the Intel MKL version
that has been created in Task 4.4 of that particular exercise sheet.

: This exercise is available on Windows only. Exercise 4 of the Windows-HPC and Visual
Studio Basics exercise sheet distributed on Monday included several versions of a Matrix-
Multiplication code.

4 Thinking about Work-Distribution
Please note

Exercise 1a: Examine the code and think about where to put the parallelization directive(s). On Linux
you may want to use the Sun Studio Performance Analyzer to do a performance analysis of the code.
Execute the performance analyzer like this: ‘OMP_NUM_THREADS=procs collect for.exe’. Then
use the ‘analyzer’ command to open the performance analysis result.

: Some parts of this exercise makes use of tools that will be presented in detail on
Thursday, so you may want to skip these parts for now. You can work on this exercise already, but
the tools will be there to help you solving these tasks. Go to the for directory. Compile the for.c
code via ‘make [debug|release]’ or the Visual Studio IDE and execute the resulting executable.
Don’t forget to set ‘OMP_NUM_THREADS=procs’, where procs denotes the number of threads to be
used.

Exercise 1b: Examine the code and think about where to put the parallelization directive(s). On
Windows you may want to use the Intel Parallel Amplifier to do a performance analysis of the code.
Execute the Amplifier by selecting Hotspots – Where is my program spending time? and clicking the
Profile button in the toolbar.

Exercise 2: If you work on a multicore system (e.g. the cluster at Aachen University) measure the
speedup and the efficiency of the parallelized code. How good does the code scale and which scaling
did you expect?

Exercise 3a: On Linux you may want to use the Sun Studio Performance Analyzer to examine the
(parallel) runtime behavior of the code to investigate why the scaling does not meet your
expectation. This time the Timeline View may give you an idea of why. Improve the scaling of the
code, think about the scheduling of the Worksharing construct(s).

Exercise 3b: On Windows you may want to use the Intel Parallel Amplifier to examine the (parallel)
runtime behavior of the code to investigate why the scaling does not meet your expectation. This
time you have to select the Concurrency – Where is my Concurrency poor? Configuration and switch
to the Thread-Function-Caller View to get an idea of why. Improve the scaling of the code, think
about the scheduling of the Worksharing construct(s).

terboven@rz.rwth-aachen.de OpenMP_Exercises.docx

4 / 10 Introduction to OpenMP: Exercises and Handout

5 Parallelization of an iterative Jacobi Solver
Please note

Exercise 1: Use the Sun Studio Performance Analyzer on Linux or the Intel Parallel Amplifier on
Windows to find the compute-intensive program parts of the Jacobi solver.

: Some parts of this exercise makes use of tools that will be presented in detail on
Thursday, so you may want to skip these parts for now. You can work on this exercise already, but
the tools will be there to help you solving these tasks. Go to the jacobi_1 directory. Compile the
jacobi.c code via ‘make [debug|release]’ or the Visual Studio IDE and execute the resulting
executable. Don’t forget to set ‘OMP_NUM_THREADS=procs’, where procs denotes the number of
threads to be used.

Number Line Number Function Name Runtime Percentage
1
2
3
Execute the performance analyzer like this: ‘collect jacobi.exe < input’. Then use the
‘analyzer’ command to open the performance analysis result. Execute the Amplifier by selecting
Hotspots – Where is my progam spending time? and clicking the Profile button in the toolbar.

Exercise 2: Parallelize the compute-intensive program parts with OpenMP. For a simple start, create
one parallel region for each performance hotspot.

Exercise 3: Try to combine parallel regions that are in the same routine into one parallel region.

6 OpenMP Puzzles
The following declarations and definitions occur in all exercises before the Parallel Region:

int i;
double A[N] = { ... }, B[N] = { ... }, C[N], D[N];
const double c = ...;
const double x = ...;
double y;

Exercise 1: Insert missing OpenMP directives to parallelize this loop:

for (i = 0; i < N; i++)
{
 y = sqrt(A[i]);
 D[i] = y + A[i] / (x * x);
}

terboven@rz.rwth-aachen.de OpenMP_Exercises.docx

5 / 10 Introduction to OpenMP: Exercises and Handout

Exercise 2: Insert missing OpenMP directives to make both loops run in parallel:

#pragma omp parallel
{

for (i = ; i < N; i +=)
{
 D[i] = x * A[i] + x * B[i];
}

#pragma omp for
for (i = 0; i < N; i++)
{
 C[i] = c * D[i];
}

} // end omp parallel

Exercise 3: Can you parallelize this loop – if yes how, if not why?

#pragma omp parallel for
for (int i = 1; i < N; i++)
{
 A[i] = B[i] – A[i – 1];
}

7 Dry Runs on Various Aspects
The code snippet below implements a Matrix times Vector (MxV) operation, where a is a vector of
Rm, B is Matrix of Rmxn and c is a Vector of Rn: a = B ∙ c.

01 void mxv_row(int m, int n, double *A, double *B, double *C)
02 {
03 int i, j;
04
05 for (i=0; i<m; i++)
06 {
07 A[i] = 0.0;
08 for (j=0; j<n; j++)
09 A[i] += B[i*n+j]*C[j];
10 }
11 }

Exercise 1: Parallelize the for loop in line 05 by providing the appropriate line in OpenMP. Which
variables have to be private and which variables have to be shared?

Exercise 2: Which schedule would you propose for this parallelization? Explain your answer and
briefly list the pros and contras for each of the three OpenMP worksharing schedules (namely static,
dynamic and guided) for this specific case.

terboven@rz.rwth-aachen.de OpenMP_Exercises.docx

6 / 10 Introduction to OpenMP: Exercises and Handout

Exercise 3: Would it be possible to parallelize the for loop in line 08? If your answer is yes, provide
the appropriate line in OpenMP and explain what scaling you would expect. If your answer is no,
explain why you think it is not possible.

Exercise 4: If the code would be called as shown below, how would the parallelization look like (in
line 05) and which variables would be private and shared? Provide the appropriate line in OpenMP
and state for each variable (m, n, A, B, C, i, j) whether it is private or shared.

21 int m = ...;
22 int n = ...;
23 double* A = ...;
24 double* B = ...;
25 double* C = ...;
26
27 [… program logic here …]
28
29 #pragma omp parallel
30 {
31 mxv_row(m, n, A, B, C);
32 }

8 Finding Data Races: Primes
Please note

Exercise 1: Execute the program twice, with a given number of threads (at least two). You will find
that the number of primes found in the specified interval will change - which of course is not the
correct result. Try to find the Data Race by looking at the source code …

: Some parts of this exercise makes use of tools that will be presented in detail on
Thursday, so you may want to skip these parts for now. You can work on this exercise already, but
the tools will be there to help you solving these tasks. Go to the primes directory. Compile the
PrimeOpenMP.c code via ‘make [debug|release]’ or using the Visual Studio IDE and execute the
resulting executable. Don’t forget to set ‘OMP_NUM_THREADS=procs’, where procs denotes the
number of threads to be used.

Exercise 2: Use the Sun Thread Analyzer on Linux or the Intel Parallel Inspector on Windows to find
the Data Race in this code. Compile and run the PrimeOpenMP.c code via ‘make check’ on Linux or
select Threading Errors from the Inspect button on Windows. Note: In order to not wait for the
analysis result too long, the search interval has been shortened in the Makefile on Linux, you should
probably set the interval specified as the program argument to “0 1000” as well. Open the Thread
Analyzer GUI program via ‘tha tha.1.er’ or wait for the Intel Parallel Inspector to present analysis
results.

• How many Data Races are reported in how many program lines?
• In how many variables do the Data Races occur? Name the variables.

Exercise 3: Correct the PrimeOpenMP.c code using appropriate OpenMP synchronization
constructs. Use the Sun Thread Analyzer or the Intel Parallel Inspector to verify that you have
eliminated all Data Races.

terboven@rz.rwth-aachen.de OpenMP_Exercises.docx

7 / 10 Introduction to OpenMP: Exercises and Handout

Exercise 4: What are the limitations of Data Race detection tools like the Sun Thread Analyzer or the
Intel Parallel Inspector?

Exercise 5: Can you image why program verification at compile time can only be very limited and why
it cannot detect the issues the thread checking tools are able to report?

9 Finding Data Races: Jacobi
Please note

Exercise 1: Correct the jacobi.c code using appropriate OpenMP synchronization or privatization
constructs. Use the Sun Thread Analyzer or the Intel Parallel Inspector to verify that you have
eliminated all Data Races.

: Some parts of this exercise makes use of tools that will be presented in detail on
Thursday, so you may want to skip these parts for now. You can work on this exercise already, but
the tools will be there to help you solving these tasks. Go to the jacobi_2 directory. Compile and
run the jacobi.c code via ‘make check’ or the Visual Studio IDE. Open the Thread Analyzer GUI
program via ‘tha tha.1.er’ or perform an analysis using the Intel Parallel Inspector.

Exercise 2: Compile the jacobi.c code via ‘make [debug|release]’ or use the Visual Studio IDE
and and execute the resulting executable. Don’t forget to set ‘OMP_NUM_THREADS=procs’, where
procs denotes the number of threads to be used. Compare the performance (either MFLOP/s or
runtime) of both versions (each executed with two threads) over the performance of the code when
the Thread Analyzer was used. Which performance ratio do you get?

10 First steps with Tasks: Fibonacci and two small code snippets
During these two exercises you will examine the new Tasking feature of OpenMP 3.0.

Exercise 1: Go to the fibonacci directory. This code computes the Fibonacci number using a
recursive approach – which is not optimal from a performance point of view, but well-suited for this
exercise.

Examine the fibonacci.c code. Parallelize the code by using the Task concept of OpenMP 3.0.
Hint: The Parallel Region should reside in main() and the fib() function should be entered the first
time with one thread only. You can compile the code via ‘gmake [debug|release]’ or the Visual
Studio IDE.

terboven@rz.rwth-aachen.de OpenMP_Exercises.docx

8 / 10 Introduction to OpenMP: Exercises and Handout

Exercise 2: The code below performs a traversal of a dynamic list and for each list element the
process() function is called. The for-loop continues until e->next points to null. Such a loop could
not be parallelized in OpenMP so far, as the number of loop iterations (= list elements) could not be
computed. Parallelize this code using the Task concept of OpenMP 3.0. State the scope of each
variable explicitly.

01 List l;
02 Element e;
03
04
05
06
07 for(e = l->first; e; e = e->next)
08 {
09
10
11 process(e);
12
13 }

Exercise 3: The code below performs a depth-first tree traversal and for each element the process()
function is called. Parallelize this code using the Task concept of OpenMP 3.0 and allow for pre- and
postorder traversal depending on the value of the post variable. State the scope of each variable
explicitly.

01 void traverse(node *p, bool post)
02 {
03 if (p->left)
04
05
06 traverse(p->left, post);
07
08 if (p->right)
09
10
11 traverse(p->right, post);
12
13 if (post) /* postorder ! */
14 {
15
16 }
17 process(p);
18 }

terboven@rz.rwth-aachen.de OpenMP_Exercises.docx

9 / 10 Introduction to OpenMP: Exercises and Handout

11 Exploiting Architectures: STREAM
The STREAM memory benchmark is a widely used instrument for memory bandwidth measurements.
It tries to measure the bandwidth that is actually available to a program, which typically differs from
what a vendor specifies as the maximum memory bandwidth. The version provided for this exercise
has been modified to use OpenMP and runs only one test case.

Please note that these exercises will only show the desired effects work on a cc-NUMA machine, so
please follow the instructions given during the Lab.

On Linux, the taskset command can be used to restrict a process to a subset of all the cores in a
system. The syntax that should be used in this exercise is as follows:

taskset –c cpu-list cmd [args]

where cmd denotes the program to be executed under the specified restriction. The program
cpuinfo can be used to query the core numbering on a given machine (not available on all
machines, not available in the virtual machine). The program /home/hpc/bin/lstopo can be used
to get a graphical presentation of the machine architecture.

On Windows, the start command can be used to restrict a process to a subset of all the cores in a
system. The system that should be used in the exercise is as follows:

set OMP_NUM_THREADS=2
start /B /wait /affinity <hex_affinity> cmd [args]

where cmd denotes the program to be executed under the specified restriction and hex_affinity
denotes a bit-wise affinity mask as a hex number (bit = 1 → core is allowed for the program). The
program c:\Program Files (x86)\Intel\MPI\3.2.2.006\ia32\bin\cpuinfo.exe can be
used to query the core numbering on a given machine.

Exercise 1: Go to the stream directory. Take a look at the source code and examine the operation
that is done in order to measure the performance of the memory subsystem.

Exercise 2: Compile the stream.c code via ‘make release’ or the Visual Studio IDE and execute
the program via ‘OMP_NUM_THREADS=2 taskset –c binding ./stream.exe’ or using the
start command as described above, for each binding in the table below. With an array size of
10000000, each array is approximately 75mb in size. How do you explain the performance
variations?

Threads Binding (no blanks in between) SAXPYing [MB/s]
2 0,1
2 0,2
2 0,4

terboven@rz.rwth-aachen.de OpenMP_Exercises.docx

10 / 10 Introduction to OpenMP: Exercises and Handout

12 Dry Runs on Various Aspects
Exercise 1: In Exercise 8, the Fibonacci number fib(n) has been computed as:

fib(1) = 1
fib(2) = 1
fib(n) = fib(n-1) + fib(n-2)

This algorithm can be transformed to an iterative approach, which typically is more efficient:

a = 1, b = 1
for (i = 3; i <= n; i++)
 c = a + b; a = b; b = c
fib(n) = b

Can this algorithm be parallelized (in OpenMP) as well? If you think so, provide a sketch of the
parallelization. If you think not, explain why.

Exercise 2: Parallelize the following – recursive - Fibonacci algorithm with OpenMP 2.5, that means
without using Tasks. The parallelization should be internal in this function, such that it could be called
as a library routine.

01 int fib(int n)
02 {
03 int x, y;
04 if (n < 2) return n;
05 x = fib(n – 1);
06 y = fib(n – 2);
07 return x + y;
08 }

If you think that it might improve the scalability of your approach, you are free to restructure the
code according to your needs, as long as the same interface is presented to the user.

	Abstract
	1 Hello World
	2 Parallelization of Pi (numerical integration)
	3 Parallelization of the Matrix- Multiplication
	4 Thinking about Work-Distribution
	5 Parallelization of an iterative Jacobi Solver
	6 OpenMP Puzzles
	7 Dry Runs on Various Aspects
	8 Finding Data Races: Primes
	9 Finding Data Races: Jacobi
	10 First steps with Tasks: Fibonacci and two small code snippets
	11 Exploiting Architectures: STREAM
	12 Dry Runs on Various Aspects

