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Outline

SIMT Architecture, Warps
Kernel optimizations

Global memory throughput
Launch configuration
Shared memory access
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Shared memory access
Instruction throughput / control flow

Optimization of CPU-GPU interaction
Maximizing PCIe throughput
Overlapping kernel execution with memory copies

Next-Gen GPUs – The Fermi Architecture



SIMT Architecture 

GPU is structured into MPs of multiple cores
Threads execute as groups of 32 threads (warps)

Threads share same PC

Threads inside warp may diverge
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Threads inside warp may diverge
Divergent threads within one warp serialize

Best Performance when warp executes 
same code path

Note: Threads of warp execute synchronous
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Global Memory Throughput



Memory Hierarchy Review

Local storage
Each thread has own local storage
Mostly registers (managed by the compiler)

Shared memory
Each thread block has its own shared memory
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Each thread block has its own shared memory
Very low latency (a few cycles)
Very high throughput: 38-44 GB/s per multiprocessor

30 multiprocessors per GPU -> over 1.1-1.4 TB/s
Global memory

Accessible by all threads as well as host (CPU)
High latency ( 400-800 cycles)
Throughput: 140 GB/s (1GB boards), 102 GB/s (4GB boards)



GMEM Coalescing: Compute Capability 1.2, 1.3

Possible GPU memory bus transaction sizes:
32B, 64B, or 128B
Transaction segment must be aligned

First address = multiple of segment size
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First address = multiple of segment size

Hardware coalescing for each half-warp (16 threads ):
Memory accesses are handled per half-warps
Carry out the smallest possible number of transactions
Reduce transaction size when possible



HW Steps when Coalescing for half-warp

Find the memory segment that contains the address r equested by the 
lowest numbered active thread :

32B segment for 8-bit data
64B segment for 16-bit data

128B segment for 32, 64 and 128-bit data.

Find all other active threads whose requested addre ss lies in the same 
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Find all other active threads whose requested addre ss lies in the same 
segment
Reduce the transaction size, if possible:

If size == 128B and only the lower or upper half is used, reduce transaction to 64B
If size == 64B and only the lower or upper half is used, reduce transaction to 32B

Applied even if 64B was a reduction from 128B

Carry out the transaction, mark serviced threads as  inactive
Repeat until all threads in the half-warp are servi ced
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Threads 0-15 access 4-byte words at addresses 116-
176

Thread 0 is lowest active, accesses address 116
128-byte segment: 0-127

t1 t2
...

t0 t15t3
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96 192128

128B segment

160 224 288256

...

0 32 64



Threads 0-15 access 4-byte words at addresses 116-
176

Thread 0 is lowest active, accesses address 116
128-byte segment: 0-127 ( reduce to 64B )

t1 t2
...

t0 t15t3
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96 192128

64B segment

160 224 288256

...

0 32 64



Threads 0-15 access 4-byte words at addresses 116-
176

Thread 0 is lowest active, accesses address 116
128-byte segment: 0-127 ( reduce to 32B )

t1 t3
...

t0 t15t2
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96 192128

32B transaction

160 224 288256

...

0 32 64



Threads 0-15 access 4-byte words at addresses 116-
176

Thread 3 is lowest active, accesses address 128
128-byte segment: 128-255

t1 t2
...

t0 t15t3
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96 192128

128B segment

160 224 288256

...

0 32 64



Threads 0-15 access 4-byte words at addresses 116-
176

Thread 3 is lowest active, accesses address 128
128-byte segment: 128-255 ( reduce to 64B )

t1 t2
...

t0 t15t3

© NVIDIA Corporation 2010

96 192128

64B transaction

160 224 288256

...

0 32 64
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Comparing Compute Capabilities

Compute capability < 1.2
Requires threads in a half-warp to:

Access a single aligned 64B, 128B, or 256B segment
Threads must issue addresses in sequence

If requirements are not satisfied:
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If requirements are not satisfied:
Separate 32B transaction for each thread

Compute capability 1.2 and 1.3
Does not require sequential addressing by threads
Perf degrades gracefully when a half-warp addresses multiple 
segments



Experiment: Impact of Address Alignment

Assume half-warp accesses a contiguous region

Throughput is maximized when region is aligned on i ts size 
boundary

100% of bytes in a bus transaction are useful
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100% of bytes in a bus transaction are useful

Impact of misaligned addressing:
32-bit words, streaming code, Quadro FX5800 (102 GB/s) 
0 word offset: 76 GB/s  (perfect alignment, typical perf)
8 word offset: 57 GB/s  (75% of aligned case)
All others :       46 GB/s  (61% of aligned case)



Address Alignment, 32-bit words

8-word (32B) offset from perfect alignment:
Observed 75% of the perfectly aligned perf
Segments starting at multiple of 32B

One 128B transaction ( 50% efficiency)
Segments starting at multiple of 96B

Two 32B transactions ( 100% efficiency)
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Two 32B transactions ( 100% efficiency)

9664320 160128

128B transaction

9664320 160128

32B32B



Address Alignment, 32-bit words

4-word (16B) offset (other offsets have the same pe rf):
Observed 61% of the perfectly aligned perf
Two types of segments, based on starting address

One 128B transaction ( 50% efficiency)
One 64B and one 32B transaction ( 67% efficiency)
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9664320 160128

128B transaction

9664320 160128

32B64B



Address Alignment, 64-bit words

Can be analyzed similarly to 32-bit case:
0B offset:  80 GB/s  (perfectly aligned)
8B offset:  62 GB/s  (78% of perfectly aligned)

16B offset:  62 GB/s  (78% of perfectly aligned)
32B offset:  68 GB/s  (85% of perfectly aligned)
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32B offset:  68 GB/s  (85% of perfectly aligned)
64B offset:  76 GB/s  (95% of perfectly aligned)

Compare 0 and 64B offset performance:
Both consume 100% of the bytes

64B: two 64B transactions
0B: a single 128B transaction, slightly faster



GMEM Optimization Guidelines

Strive for perfect coalescing
Align starting address (may require padding)
Warp should access within contiguous region

Process several elements per thread
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Process several elements per thread
Multiple loads get pipelined
Indexing calculations can often be reused

Launch enough threads to cover access latency
GMEM accesses are not cached
Latency is hidden by switching threads (warps)
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Launch Configuration



Launch Configuration

How many threads/threadblocks to launch?
Key to understanding:

Instructions are issued in order
A thread blocks when one of the operands isn’t read y:
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Memory read doesn’t block

Latency is hidden by switching threads

GMEM latency is 400-800 cycles

Conclusion:
Need enough threads to hide latency



Hiding Latency

Arithmetic:
Need at least 6 warps (192) threads per SM

Memory:
Depends on the access pattern
For GT200, 50% occupancy (512 threads per SM) is often sufficient

Occupancy = fraction of the maximum number of threads per multiprocessor
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Hiding Latency

Streaming 16M words: each thread reads, increments, writes 1 elem ent

Arithmetic:
Need at least 6 warps (192) threads per SM

Memory:
Depends on the access pattern
For GT200, 50% occupancy (512 threads per SM) is often sufficient

Occupancy = fraction of the maximum number of threads per multiprocessor
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Streaming 16M words: each thread reads, increments, writes 1 elem ent



Occupancy Calculator
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Launch Configuration: Summary

Need enough total threads to keep GPU busy
Currently (GT200), 512+ threads per SM is ideal
Fewer than 192 threads per SM WILL NOT hide arithmetic latency

Threadblock configuration
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Threadblock configuration
Threads per block should be a multiple of warp size  (32)
SM can concurrently execute up to 8 threadblocks

Really small threadblocks prevent achieving good occ upancy
Really large threadblocks are less flexible
I generally use 128-256 threads/block , but use whatever is best for 
the application
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Memory Throughput as Performance 
Metric



Global Memory Throughput Metric

Many applications are memory throughput bound
When coding from scratch:

Start with memory operations first, achieve good th roughput
Add the arithmetic, measuring perf as you go

When optimizing:
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When optimizing:
Measure effective memory throughput
Compare to the theoretical bandwidth

70-80% is very good, ~50% is good if arithmetic is nontrivial
Measuring throughput

From the app point of view (“useful” bytes)
From the hw point of view (actual bytes moved across the bus)
The two are likely to be different

Due to coalescing, discrete bus transaction sizes



Measuring Memory Throughput

Latest Visual Profiler reports memory throughput
From HW point of view
Based on counters for one TPC (3 multiprocessors )
Need compute capability 1.2 or higher GPU
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Measuring Memory Throughput

Latest Visual Profiler reports memory throughput
From HW point of view
Based on counters for one TPC (3 multiprocessors )
Need compute capability 1.2 or higher GPU
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Measuring Memory Throughput

Latest Visual Profiler reports memory throughput
From HW point of view
Based on counters for one TPC (3 multiprocessors )
Need compute capability 1.2 or higher GPU
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Shared Memory



Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce global memory accesses
Use it to avoid non-coalesced access

Organization:
16 banks, 32-bit wide banks
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16 banks, 32-bit wide banks
Successive 32-bit words belong to different banks

Performance:
32 bits per bank per 2 clocks per multiprocessor
smem accesses are per 16-threads (half-warp)
serialization: if n threads (out of 16) access the same bank, n accesses 
are executed serially
broadcast: n threads access the same word in one fetch



Example of Using Shared Memory

Applying a 1D stencil:
1D data
For each output element, sum all elements within a radius

For example, radius = 3
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Add 7 input elements

radius radius



Implementation with Shared Memory

1D threadblocks (partition the output)
Each threadblock outputs BLOCK_DIMX elements

Read input from gmem to smem
Needs BLOCK_DIMX + 2*RADIUS input elements

Compute
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Compute
Write output to gmem

“halo” “halo”Input elements corresponding to output

as many as there are threads in a threadblock



Kernel code

__global__ void stencil( int *output, int *input, int dimx, int dimy )
{

__shared__ int s_a[BLOCK_DIMX+2*RADIUS];

int global_ix = blockIdx.x*blockDim.x + threadIdx.x;
int local_ix = threadIdx.x + RADIUS;

s_a[local_ix] = input[global_ix];
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if ( threadIdx.x < RADIUS ) {
s_a[local_ix – RADIUS]                             = input[global_ix – RADIUS];
s_a[local_ix + BLOCK_DIMX + RADIUS] = input[global_i x + RADIUS];

}
__syncthreads();

int value = 0;
for( offset = -RADIUS; offset<=RADIUS; offset++ )

value += s_a[ local_ix + offset ];

output[global_ix] = value;
}



Thread Synchronization Function

void __syncthreads ( void )
Synchronizes all threads in a threadblock

Since threads are scheduled at run -time

© NVIDIA Corporation 2010

Since threads are scheduled at run -time
Once all threads have reached this point, execution  resumes normally
Used to avoid RAW / WAR / WAW hazards when accessin g shared 
memory

Should be used in conditional code only if the cond itional is 
uniform across the entire thread block



Bank Addressing Examples

No Bank Conflicts No Bank Conflicts

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0
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Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2



Bank Addressing Examples

2-way Bank Conflicts 8-way Bank Conflicts

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0x8
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Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

x8



Trick to Assess Impact On Performance

Change all SMEM reads to the same value
All broadcasts = no conflicts
Will show how much performance could be improved by  eliminating 
bank conflicts
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The same doesn’t work for SMEM writes
So, replace SMEM array indices with threadIdx.x

Can also be done to the reads



Additional “memories”

Texture and constant
Read-only
Data resides in global memory
Different read path:
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Different read path:
includes caches (unlike current global memory acces s)



Constant Memory

Data stored in global memory, read through a consta nt-cache 
path

__constant__ qualifier in declarations
Can only be read by GPU kernels
Limited to 64KB
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Limited to 64KB

To be used when all threads in a warp read the same  address
Serializes otherwise

Throughput: 
32 bits per warp per clock per multiprocessor
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Instruction Throughput / Control Flow



Runtime Math Library and Intrinsics

Two types of runtime math library functions
__func(): many map directly to hardware ISA

Fast but lower accuracy ( see CUDA Programming Guide for full details )
Examples: __sinf (x), __expf (x), __powf (x, y)

func(): compile to multiple instructions
Slower but higher accuracy ( 5 ulp or less )
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Slower but higher accuracy ( 5 ulp or less )
Examples: sin (x), exp(x), pow (x, y)

A number of additional intrinsics:
__sincosf (), __frcp_rz (), ...
Explicit IEEE rounding modes (rz,rn,ru,rd)



Control Flow

Instructions are issued per 32 threads (warp)
Divergent branches:

Threads within a single warp take different paths
if-else , ...

Different execution paths within a warp are seriali zed
Different warps can execute different code with no impact on 
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Different warps can execute different code with no impact on 
performance
Avoid diverging within a warp

Example with divergence: 
if (threadIdx.x > 2) {...} else {...}
Branch granularity < warp size

Example without divergence:
if (threadIdx.x / WARP_SIZE > 2) {...} else {...}
Branch granularity is a whole multiple of warp size



Profiler and Instruction Throughput

Profiler counts per multiprocessor:
Divergent branches
Warp serialization
Instructions issues
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Visual Profiler derives:
Instruction throughput

Fraction of fp32 arithmetic instructions that could  have been issued in the 
same amount of time

– So, not a good metric for code with fp64 arithmetic or transcendentals
Extrapolated from one multiprocessor to GPU



Profiler and Instruction Throughput

Divergent branches
Warp serialization
Instructions issues
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Visual Profiler derives:
Instruction throughput

Fraction of fp32 arithmetic instructions that could  have been issued in the 
same amount of time

– So, not a good metric for code with fp64 arithmetic or transcendentals
Extrapolated from one multiprocessor to GPU



Tricks with Code Comments

Comment out arithmetic
To assess memory-only performance
Fine as long as memory access is not data-dependent

Comment out gmem accesses
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Comment out gmem accesses
To assess arithmetic-only performance
Fine as long as computation is not data dependent
Eliminating reads is straightforward
Eliminating writes is trickier

Compiler will throw away all code it deems as not c ontributing to output
Workaround: precede writes with an if-statement tha t always fails 

– For example:  if( threadIdx.x == -2 )
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CPU-GPU Interaction



Pinned (non-pageable) memory

Pinned memory enables:
faster PCIe copies (~6 GB/s with PCIe 2.0)
memcopies asynchronous with CPU
memcopies asynchronous with GPU

Usage
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Usage
cudaHostAlloc / cudaFreeHost

instead of malloc / free

Implication:
pinned memory is essentially removed from host virt ual memory



Streams and Async API

Default API:
Kernel launches are asynchronous with CPU
Memcopies (D2H, H2D) block CPU thread
CUDA calls are serialized by the driver

Streams and async functions provide:
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Streams and async functions provide:
Memcopies (D2H, H2D) asynchronous with CPU
Ability to concurrently execute a kernel and a memc opy

Stream = sequence of operations that execute in iss ue-order 
on GPU

Operations from different streams can be interleave d
A kernel and memcopy from different streams can be o verlapped



Overlap kernel and memory copy

Requirements:
D2H or H2D memcopy from pinned memory
Device with compute capability �  1.1 (G84 and later)
Kernel and memcopy in different, non-0 streams

Code:
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Code:
���������	
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potentially
overlapped



Call Sequencing for Optimal Overlap

CUDA calls are dispatched to the hw in the sequence  they were 
issued

One kernel and one memcopy can be executed concurren tly

A call is dispatched if both are true:
Resources are available 
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Resources are available 
Preceding calls in the same stream have completed

Note that if a call blocks, it blocks all other cal ls of the same type 
behind it, even in other streams

Type is one of { kernel, memcopy}



Stream Examples (current HW)

K1,M1,K2,M2: K1
M1

K2
M2

K1,K2,M1,M2: K1
M1
K2

M2
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K1,M1,M2: K1
M1 M2

K1,M2,M1: K1
M1M2

K1,M2,M2: K1
M2M2

Time 



Copy-Compute Overlap with Zero-Copy

Pinned host memory can be mapped into GPU memory sp ace
Read/Write via GPU translates to PCIe traffic
Increased latency can still be hidden if enough thr eads available

Finer grained overlap
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Overlap on the warp level rather than kernel level
Coalesced memory access is even more critical!

Suited to transfer small amounts of memory
Use-case: Iterative solver, 1 kernel/iteration, 1 k ernel to check 
convergence and write back result via mapped host m emory



Summary

GPU-CPU interaction:
Minimize CPU/GPU idling, maximize PCIe throughput

Global memory:
Maximize throughput (GPU has lots of bandwidth, use  it effectively)
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Kernel Launch Configuration:
Launch enough threads per SM to hide latency
Launch enough threadblocks to load the GPU



Summary

GPU-CPU interaction:
Minimize CPU/GPU idling, maximize PCIe throughput

Global memory:
Maximize throughput (GPU has lots of bandwidth, use  it effectively)
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Kernel Launch Configuration:
Launch enough threads per SM to hide latency
Launch enough threadblocks to load the GPU

Measure!
Use the Visual Profiler or Parallel Nsight, simple code modifications
Compare to theoretical peaks



© NVIDIA Corporation 2010

NEXT GENERATION ARCHITECTURE
Fermi



Introducing the Fermi Architecture

3 billion transistors

512 cores

DP performance 50% of SP

© NVIDIA Corporation 2010

ECC

L1 and L2 Caches 

GDDR5 Memory

Up to 1 Terabyte of GPU Memory

Concurrent Kernels, C++



Fermi SM Architecture

32 CUDA cores per SM

Double precision 50% of single 
precision

8x over GT200
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8x over GT200

Dual Thread Scheduler

64 KB of RAM for shared memory 
and  L1 cache (configurable)



CUDA Core Architecture

New IEEE 754-2008 floating-point 
standard, surpassing even the most 
advanced CPUs

Fused multiply -add (FMA) instruction 
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Fused multiply -add (FMA) instruction 
for both single and double precision 

Newly designed integer ALU 
optimized for 64-bit and extended 
precision operations



Cached Memory Hierarchy

First GPU architecture to support a 
true cache hierarchy in combination 
with on-chip shared memory

L1 Cache per SM (per 32 cores)
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L1 Cache per SM (per 32 cores)
Improves bandwidth and reduces 
latency

Unified L2 Cache (768 KB)
Fast, coherent data sharing across 
all cores in the GPU Parallel DataCache™

Memory Hierarchy



Larger, Faster Memory Interface

GDDR5 memory interface
2x speed of GDDR3

Up to 1 Terabyte of memory 
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Up to 1 Terabyte of memory 
attached to GPU

Operate on large data sets



ECC

ECC protection for
DRAM

ECC supported for GDDR5 memory

All major internal memories
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All major internal memories
Register file, L1 cache, L2 cache

Detect 2-bit errors, correct 1-bit errors (per word )



GigaThread™ Hardware Thread Scheduler

Hierarchically manages 
thousands of simultaneously 
active threads
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10x faster application context 
switching

Concurrent kernel execution



GigaThread™ Hardware Thread Scheduler 
Concurrent Kernel Execution + Faster Context SwitchConcurrent Kernel Execution + Faster Context Switch
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Serial Kernel ExecutionSerial Kernel Execution Parallel Kernel ExecutionParallel Kernel Execution



GigaThread Streaming Data Transfer Engine

Dual DMA engines
Simultaneous CPU��� � GPU and GPU ��� � CPU 
data transfer
Fully overlapped with CPU and GPU 
processing time
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Activity Snapshot:



Enhanced Software Support

Full C++ Support
Virtual functions
Try/Catch hardware support
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System call support
Support for pipes, semaphores, printf, etc

Unified 64-bit memory addressing



Changes for Fermi from optimization POV

Memory operations are done per warp (32 threads)
Global memory, Shared memory

Shared memory:
16 or 48KB
Now 32 banks, 32 -bit wide each
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Now 32 banks, 32 -bit wide each

L1 cache per multiprocessor
Helps with misaligned access, strides access, some register spilling

Much improved dual-issue:
Can dual issue fp32 pairs, fp32-mem, fp64-mem, etc.

Concurrent kernel execution
Multiple Kernels can execute simultaneously


