Advanced CUDA
Programming

Dr. Timo Stich (tstich@nvidia.com)

SAANVIDIA.

Outline

® SIMT Architecture, Warps

@ Kernel optimizations

® Optimization of CPU-GPU interaction

® Next-Gen GPUs — The Fermi Architecture

© NVIDIA Corporation 2010

SIMT Architecture

© NVIDIA Corporation 2010

Instruction Cache

Scheduler Scheduler

Dispatch Dispatch

Registers

m Core

Core

El

SFU

I CACARRAEAREARAT

Core

HHHHHBHBHB
)
HHHHBHHHHBH
S S 1 g 15 g 15 g
s s 3 3 3 3 3 s
e g
3 3

L1 Cache
Shared Memory

Global Memory Throughput

Memory Hierarchy Review

® Local storage
®
®

® Shared memory
®
e
® 38-44 GB/s
@ 30
® Global memory
®
® 400-800
o 140 GB/s

© NVIDIA Corporation 2010

1.1-1.4 TB/s

102 GB/s

GMEM Coalescing: Compute Capabillity 1.2, 1.3

® Possible GPU memory bus transaction sizes:
@ 32B 64B 128B

® Hardware coalescing for each half-warp (16 threads):
®
®
®

© NVIDIA Corporation 2010

HW Steps when Coalescing for half-warp

® Find the memory segment that contains the address r equested by the
lowest numbered active thread

@ 32B 8-bit
® 64B 16-bit
@ 128B 32 64 128-bit
® Find all other active threads whose requested addre ss lies in the same
segment
® Reduce the transaction size, if possible:
) 128B 64B
®) 64B 32B
0
Carry out the transaction, mark serviced threads as Inactive

Repeat until all threads in the half-warp are servi ced

© NVIDIA Corporation 2010

© NVIDIA Corporation 2010

Threads 0-15 access 4-byte words at addresses 116-
176

® Thread O is lowest active, accesses address 116

® 128-byte segment: 0-127

22! |
[N IS N N N R I N —

\ J
Y

128B segment

© NVIDIA Corporation 2010

Threads 0-15 access 4-byte words at addresses 116-
176

® Thread O is lowest active, accesses address 116

® 128-byte segment: 0-127 (reduce to 64B)

22! |
[N IS N N N R I N —

Y
64B segment

© NVIDIA Corporation 2010

Threads 0-15 access 4-byte words at addresses 116-
176

® Thread O is lowest active, accesses address 116

® 128-byte segment: 0-127 (reduce to 32B)

22! |
IS IS N o I I I S —

Y
32B transaction

© NVIDIA Corporation 2010

Threads 0-15 access 4-byte words at addresses 116-
176

® Thread 3 is lowest active, accesses address 128

@ 128-byte segment: 128-255

) 4
128B segment

© NVIDIA Corporation 2010

Threads 0-15 access 4-byte words at addresses 116-
176

® Thread 3 is lowest active, accesses address 128

® 128-byte segment: 128-255 (reduce to 64B)

\ J
Y

64B transaction

© NVIDIA Corporation 2010

© NVIDIA Corporation 2010

Comparing Compute Capabilities

® Compute capability < 1.2

@
@ 64B 128B 256B
@

@
@ 32B

® Compute capability 1.2 and 1.3
o
o

© NVIDIA Corporation 2010

Experiment: Impact of Address Alignment

@ Assume half-warp accesses a contiguous region

® Throughput is maximized when region is aligned on | ts size
boundary
o
@ Impact of misaligned addressing:
@ 32-bit words, Quadro FX5800
@® Oword 76 GB/s
® 8 word 57 GB/s

@® All others 46 GB/s

© NVIDIA Corporation 2010

Address Alignment, 32-bit words

® 8-word (32B) offset from perfect alignment:

@ 75%

@ 32B
@ 128B 50%

(&) 96B
O 32B 100%

128B tranfaction
f \

32B 32B

© NVIDIA Corporation 2010

Address Alignment, 32-bit words

® 4-word (16B) offset (other offsets have the same pe rf):
® 61%

@
@ 128B 50%
@ 64B 32B 67%

128B tranfaction
f \

64B 32B
A

—A

f Y \

© NVIDIA Corporation 2010

Address Alignment, 64-bit words

® Can be analyzed similarly to 32-bit case:

@ OB 80 GBI/s

@ 8B 62 GB/s 78%
@ 16B 62 GB/s 78%
@ 32B 68 GB/s 85%
@ 64B 76 GB/s 95%

® Compare 0 and 64B offset performance:

o 100%
@ 64B 64B
@ 0B 128B

© NVIDIA Corporation 2010

GMEM Optimization Guidelines

@ Strive for perfect coalescing
®
®

® Process several elements per thread
®
®

® Launch enough threads to cover access latency
®
®

© NVIDIA Corporation 2010

Launch Configuration

© NVIDIA Corporation 2010

Launch Configuration

® How many threads/threadblocks to launch?

® Key to understanding:
@

@
&) 400-800

® Conclusion:
®

© NVIDIA Corporation 2010

Hiding Latency

@ Arithmetic:
Q 6 192
Q9 Memory:
Q9
®) 50% 512

@) Occupancy = fraction of the maximum number of threads per multiprocessor

© NVIDIA Corporation 2010

Hiding Latency

Q Arithmetic:
®) 6 192
Q9 Memory:
Q9
®) 50% 512

© NVIDIA Corporation 2010

@) Occupancy = fraction of the maximum number of threads per multiprocessor

Streaming 16M words: each thread reads, increments, writes 1 elem

ent

GB/s

100

1]

60

40

20

Throughput, 32-bit words

.

e

/

/

/

128 256 384 512 b4l

Threads Per Multiprocessor

/b8

896

1024

GB/s

100

80

60

40

20

Throughput, 64-bit words

| 4

/

/

/

y

o] 123 256 384 312 640 768

Threads Per Multiprocessor

T
296

1
1024

Occupancy Calculator

© NVIDIA Corporation 2010

Launch Configuration: Summary

® Need enough total threads to keep GPU busy
® 512+
® 192 WILL NOT

® Threadblock configuration
® 32
® 8

o 128-256 threads/block

© NVIDIA Corporation 2010

Memory Throughput as Performance
Metric

Global Memory Throughput Metric

® Many applications are memory throughput bound
® When coding from scratch:

o

®
® When optimizing:

o

@

@® /0-80% ~50%

® Measuring throughput

o app

o hw

o

© NVIDIA Corporation 2010

Measuring Memory Throughput

@ Latest Visual Profiler reports memory throughput
® HW
o TPC 3 multiprocessors
@ compute capability 1.2

© NVIDIA Corporation 2010

Measuring Memory Throughput

@ Latest Visual Profiler reports memory throughput
® HW
o TPC 3 multiprocessors
@ compute capability 1.2

© NVIDIA Corporation 2010

Measuring Memory Throughput

@ Latest Visual Profiler reports memory throughput
® HW
o TPC 3 multiprocessors
@ compute capability 1.2

© NVIDIA Corporation 2010

Shared Memory

© NVIDIA Corporation 2010

Shared Memory

® Uses:
[+
(¢
@
® Organization:
@ 16 32-bit
@)
® Performance:

@ 32 bits per bank per 2 clocks per multiprocessor
®
@ serialization: n

@ broadcast: n

© NVIDIA Corporation 2010

Example of Using Shared Memory

radius radius

© NVIDIA Corporation 2010

Implementation with Shared Memory

“halo” Input elements corresponding to output “halo”

as many as there are threads in a threadblock

© NVIDIA Corporation 2010

Kernel code

__shared__ints_a[BLOCK_DIMX+2*RADIUS];

_:l s_a[local_ix] = input[global_ix];

if (threadldx.x < RADIUS) {
s_a[local_ix — RADIUS]

B oo BLOCK DIV + RADIUS]
}

__syncthreads();

input[global_ix — RADIUS];
input[global_i x + RADIUS];

© NVIDIA Corporation 2010

Thread Synchronization Function

® ___syncthreads

© NVIDIA Corporation 2010

Bank Addressing Examples

NN A 1IN\ 1IN AN N /N

N TN TN TN TN TN TN TN [N

tion 2010

© NVIDIA Corporal

Bank Addressing Examples

7‘ N A AN ANN NN N 1N 7"
7 _

N N N N NN\ N\ N
N IN N NN AN AN NN NN\ N\ \ N

tion 2010

© NVIDIA Corporal

Trick to Assess Impact On Performance

® Change all SMEM reads to the same value
®
®

® The same doesn’'t work for SMEM writes
@ threadldx.x

© NVIDIA Corporation 2010

Additional “memories”

® Texture and constant
® Read-only
@® Data resides in global memory

@ Different read path:
®

© NVIDIA Corporation 2010

Constant Memory

® Data stored in global memory, read through a consta nt-cache
path
@ constant
®
® 64KB
@® To be used when all threads in a warp read the same address
®
® Throughput:
@ 32 bis

© NVIDIA Corporation 2010

Instruction Throughput / Control Flow

© NVIDIA Corporation 2010

Runtime Math Library and Intrinsics

® Two types of runtime math library functions
@ func(): many

@ see CUDA Programming Guide for full details
(&) __sinf __expf ___powf
@ func():
(&) 5 ulp orless
[+ sin exp pow

® A number of additional intrinsics:

@ sincosf frcp rz
o

© NVIDIA Corporation 2010

Control Flow

® Instructions are issued per 32 threads (warp)
® Divergent branches:

o
@ if-else
®
® Different warps can execute different code with no Impact on
performance
® Avoid diverging within a warp
®
@ if (threadldx.x >2){...} else{...}
@)
Q

@ if (threadldx.x / WARP_SIZE > 2){...} else{...}
@)

© NVIDIA Corporation 2010

Profiler and Instruction Throughput

@ Profiler counts per multiprocessor:
®
®
®

® Visual Profiler derives:

— S0, not a good metric for code with fp64 arithmetic or transcendentals

© NVIDIA Corporation 2010

Profiler and Instruction Throughput

: D

® Visual Profiler derives:

— S0, not a good metric for code with fp64 arithmetic or transcendentals

© NVIDIA Corporation 2010

Tricks with Code Comments

® Comment out arithmetic

® Comment out gmem accesses

© NVIDIA Corporation 2010

— For example: if(threadldx.x ==-2)

CPU-GPU Interaction

© NVIDIA Corporation 2010

Pinned (non-pageable) memory

® Pinned memory enables:
®
®
®

® Usage

® cudaHostAlloc cudaFreeHost
o

® Implication:
Qo

© NVIDIA Corporation 2010

Streams and Async AP

@ Default API:
Q
Q
®)

® Streams and async functions provide:
Q
Qo
@ Stream = sequence of operations that execute iniss ue-order
on GPU

© NVIDIA Corporation 2010

Overlap kernel and memory copy

® Requirements:
®
®
®

® Code:

potentially
overlapped

© NVIDIA Corporation 2010

Call Sequencing for Optimal Overlap

® CUDA calls are dispatched to the hw in the sequence they were
Issued

® One kernel and one memcopy can be executed concurren tly

@ A call is dispatched if both are true:
Q
Q

@ Note that if a call blocks, it blocks all other cal Is of the same type
behind it, even in other streams

@ Type is one of { kernel, memcopy}

© NVIDIA Corporation 2010

Stream Examples (current HW)

IA Corporation 2010

Copy-Compute Overlap with Zero-Copy

© NVIDIA Corporation 2010

Summary

® GPU-CPU interaction:
®)

® Global memory:
®

® Kernel Launch Configuration:
®
®

© NVIDIA Corporation 2010

Summary

® GPU-CPU interaction:
®
® Global memory:
®
® Kernel Launch Configuration:
®
®

@ Measure!
Q
®)

© NVIDIA Corporation 2010

NEXT GENERATION ARCHITECTURE

Introducing the Fermi Architecture

Unified L2 Cache

: -ll -II -II-II -Il -II -II -IlI

© NVIDIA Corporation 2010

Fermi SM Architecture

Instruction Cache

Scheduler Scheduler

Dispatch Dispatch

. EEEEEEEEEEE Registers

Core

Core

@

Core

Core

Core

Core

Q [o] o (=] Q Q [o] o
2 < g S 2 <} g 2
» o a o o o @ ™

I GRACARERARAAREAE

L1 Cache
Shared Memory

© NVIDIA Corporation 2010

m m m m
.Bﬂ.ﬂ..ﬂ

CUDA Core Architecture

© NVIDIA Corporation 2010

Cached Memory Hierarchy

. -II-II II -II E

Parallel DataCache™
Memory Hierarchy

© NVIDIA Corporation 2010

Larger, Faster Memory Interface

© NVIDIA Corporation 2010

ECC

© NVIDIA Corporation 2010

GigaThread™ Hardware Thread Scheduler

© NVIDIA Corporation 2010

GigaThread™ Hardware Thread Scheduler

. .
Kemnel 1 Kermel1 | Kernel 2

—
Kernel 2 Kernel 2 8
A —————

R —..
Kernel 3

Serial Kernel Execution Parallel Kernel Execution

© NVIDIA Corporation 2010

GigaThread Streaming Data Transfer Engine

@® Simultaneous

9 overlapped

© NVIDIA Corporation 2010

Enhanced Software Support

© NVIDIA Corporation 2010

Changes for Fermi from optimization POV

® Memory operations are done per warp (32 threads)
®
® Shared memory:

® L1 cache per multiprocessor
®

® Much improved dual-issue:
®

® Concurrent kernel execution
®

© NVIDIA Corporation 2010

