a1

ol ol 0, B

q
B A ke

e

-

.
.

-
-
.
.

-
.

-
-

.
.

.*m

:,:*:::::*5::.

x *ﬁzz**:”:
- -

o

L

-

**q.l..

-

-

"”*”*

.:*:**.
o
.**:**

.

1) T
(1) ‘=

L :::::::?
s

-
.
.

£)

h%*

ﬁmwa

e

-

.

—
Y e

- L
|

X
-
x”w
" |

e

m*'*
1.

-

-

e

””'w .

.
-
.

. %..:"

-
-
-
-

=
-
=
-

s
-
o

=
-
-
.
.
.
.
.
.

-

-

-

~*
s

-
-

s

.

**" .

o
L

T
e
-

I
=
.

-

.

* :”*ffff: *
-

i

o owm
* . { .* \

s
::::.

-

=
. .:*:*”.

J
- %::
.

o

L

.
-

-
-

.
-
.
-

-
-

'

o
.
-

.

-
.
-

.

-

-

-

-
e
e

b

.
-

**i:::
-

””””
.?**.H.
-

-

-
-
-
.
.
.
.
.
.

-
o
-
o
-
o
-
o
-
-
o
-
””
.
-

-
o
.

.
. ””””

.

-
.
-
L
-

-

-
-
-
-
-
-
-
-
-

-
-
-

-

-
.

-

-

.
e

. *
- -

'*..

-
-

-

.
-
-
-

-

-
-

n.*
-

-
.
.
.
-

:

::. .

- :**:
-
.

:
..
.

.
”.”* .

.

-
.
.
.
* i
.

.:.”::::

.
.
.

.

-

.
:%

.
o

-
-
-

5?
o

-
.
-

.
.
.

-
L

Mw****

.
.
-

.
.

-

-
-
.

.

=
::: i

-
-

-

S
.

WWWWWWWWWW

:::.

:*
|
x:"

N

:
L *********

¢*4*4

.
.

.

-
-

.

.

Overview

Why OpenMP

Short OpenMP Introduction
OpenMP on NUMA Machines
OpenMP on Clusters
Conclusion

Scalable OpenMP Programming — D.an Mey

eeeeeeeee
Computing and Communication

Overview

Why OpenMP

Short OpenMP Introduction
OpenMP on NUMA Machines
OpenMP on Clusters
Conclusion

Scalable OpenMP Programming — D.an Mey

eeeeeeeee
Computing and Communication

RWTH Aachen University: Key Figures WT 06/07

’--....ffu.. = N . '- /1 —
= professorsmps 3600 academic staff
Natural Sciences Humanities, Social Sciences and
Economics

25 %

21 %

Medicine
Engineering 9 %

45 % CC
Scalable OpenMP Programming — D.an Mey Rw.rl.l C

Computing and Communication

- 260 mstltutes

Why OpenMP?

Large codes mainly in C++ and Fortran and some C
Software lifetime measured in decades
MPI is there to stay on clusters
« Cannot always be applied easily — if at all
« Scalability may be limited due to underlying problem (geometry etc.)

« "MPI only" may not be appropriate for "many cores"
=> MPI + OpenMP (hybrid)
OpenMP is the alternative and the supplement to MPI

Scalability of OpenMP limited by current machinery
So far scalability explored on
e Sun Fire E25K (144 cores UltraSPARC V)
« Sun UltraSPARC T2 (64 threads in one "Niagara 2" chip)
 Intel Cluster OpenMP
 ScaleMP "Virtual SMP" C

Scalable OpenMP Programming — D.an Mey ... :

nnnnnnnnnnnnnnnnnnnnnnnnn

Statistics from the "First Petascale Book"

Chapman & Hall/CRC

Computational Science Series

PETASCALE COMPUTING

ALGORITHMS AND APPLICATIONS

EDITED BY

DAVID A. BADER

Keyword Hits |Remarks

MPI 612|since 1994
since 1997

OpenMP 150|with some 28 hits in our own
chapter about OpenMP
frequently in the context of OpenMP,

threads 109 57 in our chapter about OpenMP

C++ 87|since 1983

Fortran 69|since 1957
with some 22 hits in Zima's chapter

Chapel 49 about Chapel

UPC 30]since 2001

Co-array Fortran 27|since 1998

hybrid MPI/OpenMP |~26 |hard to count

C ~20 |hard to count

HPF 11|since 1993

X10 9

Fortress 6

Java 5|since 1995

Titanium 3

posix threads 21995, Linux since 2003

Petascale Computing: Algorithms and Applications (Chapman & Hall/Crc Comp. Sci. Ser.)
edited by David A. Bader , 2007, 528 pages, 24 contributions, 90 contributors

6

C
RWTH <.

Scalable OpenMP Programming — D.an Mey ..

mputing and Communication

Overview

Why OpenMP

Short OpenMP Introduction
OpenMP on NUMA Machines
OpenMP on Clusters
Conclusion

Scalable OpenMP Programming — D.an Mey

eeeeeeeee
Computing and Communication

Memory Model of OpenMP

« OpenMP: Shared-Memory model
» All threads share a common address space (shared memory)
 Threads can have private data (explicit user control)

* Relaxed memory consistency
 Temporary View ("Caching"):
Memory consistency is guaranteed only after synchronization points,
namely implicit and explicit fFlushes

 Each OpenMP barrier includes a flush

» Exit from worksharing constructs include barriers by default
* Entry to and exit from critical regions include a flush
» Entry to and exit from lock routines (OpenMP API) include a flush

Scalable OpenMP Programming — D.an Mey ..

private memory private memory private memory C

Heat Flow Simulation with FEM - ThermoFlow60

Thomas Haarmann, Wolfgang Koschel, Jet Propulsion Laboratory, RWTH Aachen University

e simulation of the heat flow in a
rocket combustion chamber

 Finite Element Method

 OpenMP Parallelelization
« 30000 lines of Fortran
» 200 OpenMP directives, 69 parallel loops,

« 1 main parallel region, "orphaning”
speed-up

—— SF15K, guide, omp do avoided
|| = SF15K, guide, with omp do

56 —— -+ SF15K, f85, omp do avoided
—< SF15K, f95, with omp do

— ideal

0 8 16 24 32 40 48 56 64 72
#threads (P

Scalable OpenMP Programming — D.an Mey ce

nnnnnnnnnnnnnnnnnnnnnnnnn

13

Nested OpenMP for Critical Point Computation

Samuel Sarholz, Andreas Gerndt, Computing and Communication Center, RWTH Aachen University

\:}; time: 0.311475 - sim (im:é 9.999999 - time level: 20 - time index: 19
v ;
- 1

 Analysis of complex and accurate fluid dynamics
simulations

« Extraction of Critical Points for VR
(Location with velocity =0)

o 25-100% efficiency with 128 threads on Sun Fire E25K
(72 UltraSPARC IV dual core) depending on data set

// Loop over time levels

#pragma omp parallel for num_threads(nTimeThreads) schedule(dynamic,1)

for (curT=1l; curT<=maxT; ++curT) {

// Loop over Blocks

#pragma omp parallel for num_threads(nBlockThreads) schedule(dynamic,1)

for (curB=1; curB<=maxB; ++curB) {

// Loop over Cells

#pragma omp parallel for num_threads(nCellThreads) schedule(guided)

for (curC=1; curC<=maxC; ++curC) {

FindCriticalPoints (curT, curB, curC); // highly adaptive algorithm (bisectioning)

} 1} // huge load imbalances

14 < . RWNIH -~
calable OpenMP Programming — D.an Mey .. C

Computing and Communication

Overview

Why OpenMP

Short OpenMP Introduction
OpenMP on NUMA Machines
OpenMP on Clusters
Conclusion

15

Scalable OpenMP Programming — D.an Mey

eeeeeeeee
Computing and Communication

The Earth i1s Flat

OpenMP is Hardware agnostic
It has no notion of data locality

=>

The Affinity Problem:
How to maintaining or improve
the nearness of threads and
their most frequently used data

Or:
Where to run threads?
Where to place data?

16

Sun Fire V40z (w/ dualcore AMD Opteron Chip)

4 AMD Opteron 875
dual core processors
2.2 GHz

Cache-coherent
HyperTransport
Connections

Mlernory Mlernory

17 Scalable OpenMP Programming — D.an Mey ..

mputing and Communicat

Sparse-Matrix-Vector-Multiplication
as part of the Navier Stokes Solver DROPS (C++)

C. Terboven (RZ,RWTH), A. Spiegel (RZ,RWTH), D. an Mey (RZ,RWTH),
S. Gross(IGPM,RWTH), and V. Reichelt IGPM,RWTH).

/A —=— SF 2900 (first touch)
/ —+— SF V40z (first touch)
1400.00
1200.00 / —=— SF 2900 (ignore locality)
0 / -
2 1000.00 ore locality)
o
T 800.00
= :
600.00 -
400.00 { 19,6 Mio nonzeros N
233,334 matrix dimension
200.00 - 225 MB memory footprint
0.00 ‘ ‘ ‘ ‘
0 5 10 15 20 25 IWOMP 2005

threads

Performance of a cc-Numa system is very sensitive to data placement. C

C
Scalable OpenMP Programming — D.an Mey Rer é

Computing and Communication

18

Thread-Data-Affinity (1 of 2)

* In an ideal world the operating system together with the OpenMP
runtime system would handle affinity automatically.

* In simple situations things might work well:
e Exclusive access to the compute node
« Single level of parallelism
o Static program behaviour concerning thread and data usage

« Initialization of data by the same thread which later uses the data
(,first touch policy*)

19 Scalable OpenMP Programming — D.an Mey ... :

nnnnnnnnnnnnnnnnnnnnnnnnn

Thread-Data-Affinity (2 of 2)

* In more complicated situations, you may want to

* Bind threads explicitely
(How about multi user mode? Hybrid parallelization?)

o Carefully initialize data
* If necessarry and possible, migrate data (or threads)
» Solaris MPO madvise() implements ,next touch strategy*

e Linux 2.6.18: move_pages()
can be used to implement ,next touch strategy*
(RWTH: prototype by RZ, better solution by LIBS)

» Windows: Migration is not yet supported)

 Nested OpenMP is implemented with thread pool
* Inner teams'’ threads loose affinity to their data
e Sun Studio on Solaris: SUNW_MP_THR_AFFINITY=TRUE

C
20 Scalable OpenMP Programming — D.an Mey RWTI.I C

Computing and Communication

OpenMP nested, here: 4x2 threads

_
1$omp parallel private(me) num_threads(4)

me = omp_get thread num(Q)
CALL stream(a(l,me),b(1,me),c(1,me))
1$omp end parallel

subroutine stream (a,b,c)
double precision a(*),b(*),c(®)

1$omp parallel do num_threads(2)
do 50 J = 1,n

c(i) = a(i)+x*b(j) |tO Thread tree
50 continue | | |
1$omp end parallel do t0 t1 t2 t3
] |]]
tO[|t4 | |t1||t5] |t2]||t6||t3]||t7
wniC
’ 1
21 Scalable OpenMP Programming — D.an Mey R C

OpenMP nested

Thread tree

t0

tO || t4 | |[t1||t5| [t2||t6| |t3 || t7

o i W
= e Py

tO || t7 | |t1||t4 | |t2|[t5]| |t3 || t6

time

A 4

Typically OS threads are organized in a pool
and may be allocated variably,
thus loosing data affinity !

22 Scalable OpenMP Programming — D.an Mey ... :

nnnnnnnnnnnnnnnnnnnnnnnnn

OpenMP nested

i #thrds First Affinity min max
0 SgndElre Vdéoi guaYIcore touch MB/s MBS
| Inding 1x8 Initial n.a. 2525 2534
empty machine thread
1x8 n.a. 11786 11869
-- 2][13] [1a][1s] (16][7]} o e | s
4x2 yes 4x628 4x631
. 4x2 no 4x1312 | 4x1332
4x2 yes 4x1329 | 4x1334
4x2 no 4x2640 | 4x2948
4x2 yes 4x2893 | 4x2950
4x 2 Yes + 4x2922 | 4x2934
sort

C
Scalable OpenMP Programming — D.an Mey Rer C

C p g nd Communicati

Simulating the Flow through the Human Nose

TES on Solaris

S. Johnson (PSP), C. lerotheou (PSP),

A. Spiegel (RZ,RWTH), D. an Mey (RZ,RWTH),

|. HOrschler (AIA, RWTH)

SUNW_MP_THR_AFFINITY=TRUE

Thread affinity + processor binding + data migration

improved the performance by ~25 % on a
Sun Fire E 25K

&

_/ outflow

nostril inflow \
ihl'DGt

Before Improved thread affinity
#threads Speed-up #threads Speed-up Strategy (best effort)
64 20 64 25 thread balancing 2-11
threads per team,
static schedule,
16 threads in outer team
121 20 128 27 block grouping,
16 threads in outer te
wrlnlft(r‘
’]
24 Scalable OpenMP Programming — D.an Mey R C

NPB Benchmark BT-MZ Class B

et. al.

H. Jin (Nasa Ames)

128

64

32

16

BT-MZ Class B

Speedup

SGI Altix &—

mm MPI+OMP,

Time

[nested OMP, SGI Altix A—A
1 nested OMP, SunFire

He—3k

1200 ~

1000 -

800

I
Q
o
(o]

(09s) awi |

Overview

Why OpenMP

Short OpenMP Introduction
OpenMP on NUMA Machines
OpenMP on Clusters
Conclusion

26

Scalable OpenMP Programming — D.an Mey

eeeeeeeee
Computing and Communication

OpenMP on Clusters

o Multiple Approaches (based on MPI, on DSM ...)
so far not very successful or uncomplete.

o0 Intel Cluster OpenMP on Commodity Infiniband Cluster
o Based on TreadMarks (twin pages, sending diffs,...)
o Integrated in commercial compiler (C++ and F95)

o Profits from OpenMP's memory model
(relaxed consistency, temporary view of shared data, consistency
enforced at well defined synchronization points.)

0 Need to explicitely mark some shared variables (sharable directive)
o ScaleMP — Versatile SMP™ Architecture

o Aggregation of multiple x86 boards into one larger system

o Cache coherent connection through InfiniBand

o Modified IB stack and BIOS, caching strategies

o Single system image, virtual SMP machine

o Aggregation of all I/O resources to the OS
o Affinity matters! C

27

Scalable OpenMP Programming — D.an Mey e

nnnnnnnnnnnnnnnnnnnnnnnnn

EPCC OpenMP Micro-Benchmarks

J. M. Bull. Measuring Synchronization and Scheduling Overheads in OpenMP. 1999.

PARALLEL FOR

2 threads 1.31 1.36 723.77 264.83
16 threads 5.01 7.17 4342.82 717.77
About three orders of magnitude

BARRIER

2 threads 0.75 0.58 598.82 144.45
16 threads 2.55 2.64 4062.67 429.35
REDUCTION

2 threads 1.56 2.05 932.18 298.06
16 threads 5.68 25.77 4686.00 801.91

Overhead in microseconds [us].

Binding: 1 Thread/board for CLOMP and ScaleMP(MEG)
8 Threads/board for CLOMP and ScaleMP(MEG) C

28 Scalable OpenMP Programming — D.an Mey ..

Stream Benchmark

threads Tigerton Opteron CLOMP ScaleMP
(*) (RWTH)

2080.78 1882.24 3321.08 2674.13

2 4033.88 3665.35 6495.34 5330.22

4 7008.31 6674.57 10031.07 10439.76
Higher Memory Bandwidth

8 7156.56 9629.90 10344.97 17478.77

16 7508.01 8787.33 10473.24 18666.49

Bandwidth in MB/s. Scattered Binding.

(*) We see better performance on our 4-socket Opteron machine running

Solaris C

Scalable OpenMP Programming — D.an Mey ..

nnnnnnnnnnnnnnnnnnnnnnnnn

29

FIRE: Image Retrieval System
Scales on ScaleMP (1 of 2)

FIRE = Flexible Image Retrieval Engine

— Compare the performance of common features on
different databases

— Analysis of correlation of different features

Thomas Deselaers and Daniel Keysers, RWTH 16:

Chair for Human Language Technology and Pattern Recognition

ScaleMP (MEG)
35
30 /
o 25 - — Fire
>
§ 20 -
o 15 N
109 - — linear
5 — speedup
O l I I
1 2 4 8 16 32
threads
30

Scalable OpenMP Programming — D.an Mey

RWNTH

Center for
Computing and Communication

FIRE: Image Retrieval System
Scales on ScaleMP (2 of 2)

On the new 13 node system:
13 nodes with 2 Harpertown Processors at 2.5 GHz

Speed-up

#threads on

outer inner nested inner x outer
#threads | level level best effort level
1 1,0 1,0 1,0 1x1
2 2,1 2,1 2,1 2X1
4 4,0 3,9 4,1 2 X2
8 7,8 7,1 8,0 2 X4
16 14,8 12,6 15,6 2X8
32 25,5 29,9 4x8
64 45,4 53,2 4x16
104 67,1 4 x 26

31 Scalable OpenMP Programming — D.an Mey

FIRE: Image Retrieval System on 144-core SF E25K
Nested OpenMP improves scalability

Speedup of FIRE Sun Fire E25K, 72 dual-core UltraSPARC-IV processors
Threads Only outer level Only inner level Nested OpenMP
4 3.8
8 7.6
16 14.8 14.1 15.4
32 29.6 28.9 30.6
72 56.5 --- 67.6
144 133.3

CC‘
32 Scalable OpenMP Programming — D.an Mey Rwrl.l t

Apply Suitable Strategy!

Sparse Matrix-Vector-Multiplication [Mflop/s]

4000
3500
3000

S 2000

£ 1500 1

1000

500 1

threads

— Tigerton

— Opteron

Clomp

ScaleMP
(RWTH)

mflop/s

4000

3500

3000

2500

2000

1500 -

1000

500

0

)

=

\

|

4 8 16
threads

parallel loop over #rows,

dynamic loop sched.

#nonzeros

statically partitioned

33

Scalable OpenMP Programming — D.an Mey

eeeeeeeee
nnnnnnnnnnnnnnnnnnnnnnnnn

SHEMAT on ScaleMP (1 of 2)

Seconds

Simulation of Coupled Flow, Heat Transfer and Transport Interaction
BiCGStab Solver with ILUO Preconditioner
Nested Parallelization with OpenMP

Explicite binding in all inner parallel regions

600

500

400 -

300 -

200

100

0]

SGI F1200 vSMP: 4 nodes with 2x4 cores
— Dell 140 vSMP: 4 nodes with 2x2 cores
Harpertown: 1 nodes with 2x4 cores

ScaleMP: ~ 3x on 4 nodes

@ SGI F1200
4X2%X2
3 GHz |

W Dell140
4X2X4
3.16 GHz o

O Harpertown
2x4
3 GHz

LR R U

#threads outer team x #threads inner team

> & ¢ & & P & & & & ® & 4 &
o“j'0 o“;"0 OQQP. 0“7@ o"j'0 0’1?@ & o"’p 0‘99 0V+0 0V+0 o"@ on 0‘5"0 o‘bp 0‘2’+O oQ’PD‘

34

Scalable OpenMP Programming — D.an Mey ... :

Computing and Communication

SHEMAT on ScaleMP (2 of 2)

Cranking up the probem size for the new 13 node system:
13 nodes with 2 Harpertown Processors at 2.5 GHz

#boards 1 2 4 8 10
best effort timing 8664,8 | 3357,9 | 2264,9 | 1281,8 | 981,6
#threads outer level 1 4 8 16 20
#threads inner level 4 1 2 2 2
#core used per board 4 2 4 4 4
speed-up on board level 1,0 2,6 3,8 6,8 8,8
speed-up versus 1 thread 1,4 3,6 5,3 9,4 12,2

Speed-up across the nodes good (threads on outer level don’t interact much)

Speed-up withing the nodes bad (limited memory bandwidth)

35 Scalable OpenMP Programming — D.an Mey ... :

mmmmmmmmmmmmm

munication

Overview

Why OpenMP

Short OpenMP Introduction
OpenMP on NUMA Machines
OpenMP on Clusters
Conclusion

36

Scalable OpenMP Programming — D.an Mey

eeeeeeeee
Computing and Communication

Conclusion

Scalable applications may need multiple levels of parallelization
OpenMP suitable for a growing number of cores per node
Combining MPI and OpenMP is getting more popular

OpenMP on Clusters an alternative, if MPI is too hard to apply.

Thread/Data Affinity is essential for OpenMP performance on
ccNUMA machines and even more on Clusters

OpenMP is hardware agnostic
Needs control of thread and data placement

Needs data migration, explicite and/or automatic for irregular,
adaptive problems

37

Scalable OpenMP Programming — D.an Mey ... :

nnnnnnnnnnnnnnnnnnnnnnnnn

I RZ - Parallel Programming in Computational Engineering and Science (PPCES) March 2009, - HRC Tutorjals - - Mozilla Firefox

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hife

@ - c {at I'z htkp:f v vz, rwth-aachen.de/qofid/sms/?lang=en |:J":? T ' f @

|2 Meistbesuchte Seiten ’ Erste Schritte
o e

Aktuele Nachrichten - |j Marder Alarm (Wl hktp:/fopenmp.orgfbw... 'z http:f v rz. rwth-a. . 50 RZ Aktuelles

w . Search . Help a RZ Internal
m l W A-z B Feedback i RWTH

Rechen-und
Kommunikationszentrum

Students | Faculties and Staff | Projects and Cooperations | MATSE | Press |

RZ > High Perforrmance Cormputing > Help, support, Tutorials, Events > Tutarials and Events > Parallel Pragramming in Computational Enginesting and Science (PPCES) March 2009 - HPC Tutarials -

Parallel Programming in Computational Engineering and Science (PPCES) March 2009 - HPC Tutorials -

High Performance
Computing

Further information

Questionnaire:

Monday, March 23 - Friday, March 27, 2009 We hope that you enjoyed |
the PPCES. Your feedback is ¢
welcome on the

questonnaire you find here

intel) 2 Sun =
S Kindly supported by:
Date Time Location
Monday, March 23 14:00 - 17:30 {*) . L
. . Lenter Tor Lomputing and Communication
Tuesday, March 24 09:00 - 17:30 Center for Computing and Communication
' ' RWTH Aachen University
Wednesday, March 25 09:00 - 17:30
' ' Seffenter \Weg 23
Thursday, March 26 09:00 - 17:30 5074 Aachen
Friday, March 27 09:00 - 12:30
{*) We like to draw your attention to a presentation by Horst Simon (University of California Berkeley) on Monday morning on Future Directions
in High Performance Computing 2009-2018 in the SuperC
. n Related . mFlyer E & § Course
s Introduction Everte ® Sponsars m Participants Poster & ® Agenda NEEEl
= Questionnaire!!! m Links Dl . m Contact
Information
Introduction v

Fertig auta: en-Ls

