
Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C1

Scalable OpenMP ProgrammingScalable OpenMP Programming

Dieter an Mey

Center for Computing and Communication
RWTH Aachen University, Germany

www.rz.rwth-aachen.de
anmey@rz.rwth-aachen.de

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C2

OverviewOverview

• Why OpenMP
• Short OpenMP Introduction
• OpenMP on NUMA Machines
• OpenMP on Clusters
• Conclusion

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C3

OverviewOverview

• Why OpenMP
• Short OpenMP Introduction
• OpenMP on NUMA Machines
• OpenMP on Clusters
• Conclusion

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C4

30180 students 3600 academic staff

260 institutes

428 professorships

RWTH RWTH Aachen University:Aachen University: Key Key Figures Figures WT 06/07WT 06/07

Humanities, Social Sciences and
Economics

21 %

Medicine
9 %Engineering

45 %

Natural Sciences
25 %

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C5

Why OpenMP?Why OpenMP?

• Large codes mainly in C++ and Fortran and some C
• Software lifetime measured in decades
• MPI is there to stay on clusters

• Cannot always be applied easily – if at all
• Scalability may be limited due to underlying problem (geometry etc.)
• "MPI only" may not be appropriate for "many cores"

=> MPI + OpenMP (hybrid)
• OpenMP is the alternative and the supplement to MPI

• Scalability of OpenMP limited by current machinery
• So far scalability explored on

• Sun Fire E25K (144 cores UltraSPARC IV)
• Sun UltraSPARC T2 (64 threads in one "Niagara 2" chip)
• Intel Cluster OpenMP
• ScaleMP "Virtual SMP"

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C6

Keyword Hits Remarks
MPI 612 since 1994

OpenMP 150
since 1997
with some 28 hits in our own
chapter about OpenMP

threads 109 frequently in the context of OpenMP,
57 in our chapter about OpenMP

C++ 87 since 1983
Fortran 69 since 1957

Chapel 49 with some 22 hits in Zima's chapter
about Chapel

UPC 30 since 2001
Co-array Fortran 27 since 1998
hybrid MPI/OpenMP ~26 hard to count
C ~20 hard to count
HPF 11 since 1993
X10 9
Fortress 6
Java 5 since 1995
Titanium 3
posix threads 2 1995, Linux since 2003

Petascale Computing: Algorithms and Applications (Chapman & Hall/Crc Comp. Sci. Ser.)
edited by David A. Bader , 2007, 528 pages, 24 contributions, 90 contributors

Statistics from the "First Petascale Book"Statistics from the "First Petascale Book"

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C7

OverviewOverview

• Why OpenMP
• Short OpenMP Introduction
• OpenMP on NUMA Machines
• OpenMP on Clusters
• Conclusion

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C9

Memory Model of OpenMPMemory Model of OpenMP
• OpenMP: Shared-Memory model

• All threads share a common address space (shared memory)
• Threads can have private data (explicit user control)

• Relaxed memory consistency
• Temporary View ("Caching"):

Memory consistency is guaranteed only after synchronization points,
namely implicit and explicit flushes

• Each OpenMP barrier includes a flush
• Exit from worksharing constructs include barriers by default
• Entry to and exit from critical regions include a flush
• Entry to and exit from lock routines (OpenMP API) include a flush

private memory private memory

Shared MemoryShared Memory

processorprocessor processorprocessorprocessorprocessor

private memory

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C13

• simulation of the heat flow in a
rocket combustion chamber

• Finite Element Method
• OpenMP Parallelelization

• 30000 lines of Fortran
• 200 OpenMP directives, 69 parallel loops,
• 1 main parallel region, "orphaning"

Heat Flow Simulation with FEM Heat Flow Simulation with FEM -- ThermoFlow60ThermoFlow60

Thomas Haarmann, Wolfgang Koschel, Jet Propulsion Laboratory, RWTH Aachen University

Speedup: ~40 with 68 threads

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C14

• Analysis of complex and accurate fluid dynamics
simulations

• Extraction of Critical Points for VR
(Location with velocity = 0)

• 25-100% efficiency with 128 threads on Sun Fire E25K
(72 UltraSPARC IV dual core) depending on data set

Nested OpenMP for Critical Point ComputationNested OpenMP for Critical Point Computation
Samuel Sarholz, Andreas Gerndt, Computing and Communication Center, RWTH Aachen University

// Loop over time levels
#pragma omp parallel for num_threads(nTimeThreads) schedule(dynamic,1)
for (curT=1; curT<=maxT; ++curT) {
// Loop over Blocks
#pragma omp parallel for num_threads(nBlockThreads) schedule(dynamic,1)
for (curB=1; curB<=maxB; ++curB) {
// Loop over Cells
#pragma omp parallel for num_threads(nCellThreads) schedule(guided)
for (curC=1; curC<=maxC; ++curC) {
FindCriticalPoints (curT, curB, curC); // highly adaptive algorithm (bisectioning)
} } } // huge load imbalances

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C15

OverviewOverview

• Why OpenMP
• Short OpenMP Introduction
• OpenMP on NUMA Machines
• OpenMP on Clusters
• Conclusion

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C16

The Earth is FlatThe Earth is Flat

OpenMP is Hardware agnostic
It has no notion of data locality

=>
The Affinity Problem:

How to maintaining or improve
the nearness of threads and
their most frequently used data

Or:
Where to run threads?
Where to place data?

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C17

Sun Sun FireFire V40z (w/ V40z (w/ dualcore AMDdualcore AMD OpteronOpteron Chip)Chip)

MemoryMemory

corecore
64KB 64KB

corecore
64KB 64KB

1 MB1 MB1 MB1 MB

MemoryMemory

corecore
64KB 64KB

corecore
64KB 64KB

1 MB1 MB1 MB1 MB

MemoryMemory

corecore
64KB 64KB

corecore
64KB 64KB

1 MB1 MB1 MB1 MB

MemoryMemory

corecore
64KB 64KB

corecore
64KB 64KB

1 MB1 MB1 MB1 MB

8 GB/s

6.4 GB/s

4 AMD Opteron 875
dual core processors
2.2 GHz

Cache-coherent
HyperTransport
Connections

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C18

SparseSparse--MatrixMatrix--VectorVector--Multiplication Multiplication
as part of the Navier Stokes Solver DROPS (C++)as part of the Navier Stokes Solver DROPS (C++)

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

0 5 10 15 20 25

threads

M
FL

O
PS

SF 2900 (first touch)

SF V40z (first touch)

SF 2900 (ignore locality)

SF V40z (ignore locality)

Performance of a cc-Numa system is very sensitive to data placement.

19,6 Mio nonzeros
233,334 matrix dimension
225 MB memory footprint

IWOMP 2005

4xdualcore Opteron
2.2 GHz, ccNUMA

12xdualcore UltraSPARC
1.2 GHz, flat memory

C. Terboven (RZ,RWTH), A. Spiegel (RZ,RWTH), D. an Mey (RZ,RWTH),
S. Gross(IGPM,RWTH), and V. Reichelt (IGPM,RWTH).

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C19

ThreadThread--DataData--Affinity (1 of 2)Affinity (1 of 2)

• In an ideal world the operating system together with the OpenMP
runtime system would handle affinity automatically.

• In simple situations things might work well:
• Exclusive access to the compute node
• Single level of parallelism
• Static program behaviour concerning thread and data usage
• Initialization of data by the same thread which later uses the data

(„first touch policy“)

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C20

ThreadThread--DataData--Affinity (2 of 2)Affinity (2 of 2)

• In more complicated situations, you may want to
• Bind threads explicitely

(How about multi user mode? Hybrid parallelization?)
• Carefully initialize data
• If necessarry and possible, migrate data (or threads)

• Solaris MPO madvise() implements „next touch strategy“
• Linux 2.6.18: move_pages()

can be used to implement „next touch strategy“
(RWTH: prototype by RZ, better solution by LfBS)

• Windows: Migration is not yet supported)

• Nested OpenMP is implemented with thread pool
• Inner teams‘ threads loose affinity to their data
• Sun Studio on Solaris: SUNW_MP_THR_AFFINITY=TRUE

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C21

OpenMP nested, here: 4x2 threads OpenMP nested, here: 4x2 threads

!$omp parallel private(me) num_threads(4)
me = omp_get_thread_num()
CALL stream(a(1,me),b(1,me),c(1,me))

!$omp end parallel
...
subroutine stream (a,b,c)
double precision a(*),b(*),c(*)
...

!$omp parallel do num_threads(2)
do 50 j = 1,n

c(j) = a(j)+x*b(j)
50 continue

!$omp end parallel do
...

t0

t0 t1 t2 t3

t0 t1 t2 t3t4 t5 t6 t7

Thread tree

MemoryMemory

110

MemoryMemory

332

Memory Memory

556

Memory Memory

774

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C22

OpenMP nestedOpenMP nested

t0

t0 t1 t2 t3

t0 t1 t2 t3t4 t5 t6 t7

MemoryMemory

00 11

MemoryMemory

22 33
Memory Memory

77 66

Memory Memory

445t0 t1 t2 t3

t0 t1 t2 t3t7 t4 t5 t6

Typically OS threads are organized in a pool
and may be allocated variably,
thus loosing data affinity !

Thread tree

time

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C23

OpenMP nestedOpenMP nested

t0 t2 t4 t6

t0 t2 t4 t6t1 t3 t5 t7

t0

t0

t0 t2 t4 t6t1 t3 t5 t7

t0

t0

t0 t1 t2 t3

t0 t1 t2 t3t4 t5 t6 t7 4x29434x2881Yes+sortInner
master

4 x 2

4x29504x2893yesAll inner
threads

4 x 2

4x29484x2640noAll inner
threads

4 x 2

4x29344x2922Yes +
sort

All inner
threads

4 x 2

4x13344x1329yesInner
master

4 x 2

4x13324x1312noInner
master

4 x 2

4x6314x628yesInitial
thread

4 x 2

4x6314x629noInitial
thread

4 x 2

1186911786n.a.All inner
threads

1 x 8

25342525n.a.Initial
thread

1 x 8

max
MB/s

min
MB/s

AffinityFirst
touch

#thrdsSunFire V40z dualcore
Binding = 0,1,2…7
empty machine

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C24

Simulating the Flow through the Human Nose Simulating the Flow through the Human Nose
TFS on Solaris TFS on Solaris

Thread affinity + processor binding + data migration
improved the performance by ~25 % on a
Sun Fire E 25K

Improved thread affinityBefore

block grouping,
16 threads in outer team

2712820121

thread balancing 2-11
threads per team,
static schedule,

16 threads in outer team

25642064

Strategy (best effort)Speed-up#threadsSpeed-up#threads

SUNW_MP_THR_AFFINITY=TRUE

S. Johnson (PSP), C. Ierotheou (PSP),
A. Spiegel (RZ,RWTH), D. an Mey (RZ,RWTH),
I. Hörschler (AIA, RWTH)

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C25

NPB Benchmark BTNPB Benchmark BT--MZ Class BMZ Class B
H. Jin (Nasa Ames), et. al.

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C26

OverviewOverview

• Why OpenMP
• Short OpenMP Introduction
• OpenMP on NUMA Machines
• OpenMP on Clusters
• Conclusion

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C27

o Multiple Approaches (based on MPI, on DSM …)
so far not very successful or uncomplete.

o Intel Cluster OpenMP on Commodity Infiniband Cluster
o Based on TreadMarks (twin pages, sending diffs,…)
o Integrated in commercial compiler (C++ and F95)
o Profits from OpenMP's memory model

(relaxed consistency, temporary view of shared data, consistency
enforced at well defined synchronization points.)

o Need to explicitely mark some shared variables (sharable directive)
o ScaleMP – Versatile SMP™ Architecture

o Aggregation of multiple x86 boards into one larger system
o Cache coherent connection through InfiniBand
o Modified IB stack and BIOS, caching strategies
o Single system image, virtual SMP machine
o Aggregation of all I/O resources to the OS

o Affinity matters!

OpenMP on ClustersOpenMP on Clusters

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C28

EPCC EPCC OpenMP OpenMP MicroMicro--BenchmarksBenchmarks

Tigerton Opteron CLOMP ScaleMP (MEG)

PARALLEL FOR
2 threads
16 threads

1.31
5.01

1.36
7.17

723.77
4342.82

264.83
717.77

BARRIER
2 threads
16 threads

0.75
2.55

0.58
2.64

598.82
4062.67

144.45
429.35

REDUCTION
2 threads
16 threads

1.56
5.68

2.05
25.77

932.18
4686.00

298.06
801.91

J. M. Bull. Measuring Synchronization and Scheduling Overheads in OpenMP. 1999.

About three orders of magnitude

Binding: 1 Thread/board for CLOMP and ScaleMP(MEG)
8 Threads/board for CLOMP and ScaleMP(MEG)

Overhead in microseconds [us].

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C29

Stream BenchmarkStream Benchmark

Bandwidth in MB/s. Scattered Binding.

threads Tigerton Opteron
(*)

CLOMP ScaleMP
(RWTH)

1 2080.78 1882.24 3321.08 2674.13

2 4033.88 3665.35 6495.34 5330.22

4 7008.31 6674.57 10031.07 10439.76

8 7156.56 9629.90 10344.97 17478.77

16 7508.01 8787.33 10473.24 18666.49

Higher Memory Bandwidth

(*) We see better performance on our 4-socket Opteron machine running
Solaris

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C30

FIRE: Image Retrieval SystemFIRE: Image Retrieval System
Scales on ScaleMP (1 of 2)Scales on ScaleMP (1 of 2)

FIRE = Flexible Image Retrieval Engine

– Compare the performance of common features on
different databases

– Analysis of correlation of different features
Thomas Deselaers and Daniel Keysers, RWTH I6:

Chair for Human Language Technology and Pattern Recognition

ScaleMP (MEG)

0
5

10
15
20
25
30
35

1 2 4 8 16 32

threads

 s
pe

ed
up

Fire

linear
speedup

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C31

FIRE: Image Retrieval SystemFIRE: Image Retrieval System
Scales on ScaleMP (2 of 2)Scales on ScaleMP (2 of 2)

4 x 2667,1104

4 x 1653,245,464

4 x 829,925,532

2 x 815,612,614,816
2 x 48,07,17,88
2 x 24,13,94,04
2 x 12,12,12,12
1 x 11,01,01,01

#threads on
inner x outer

level
nested

best effort
inner
level

outer
level#threads

Speed-up

On the new 13 node system:
13 nodes with 2 Harpertown Processors at 2.5 GHz

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C32

FIRE: FIRE: Image Retrieval System on 144Image Retrieval System on 144--core SF E25K core SF E25K
NestedNested OpenMP OpenMP improvesimproves scalabilityscalability

133.3------144

67.6---56.572

30.628.929.632

15.414.114.816

---7.6---8

---3.8---4

Nested OpenMPOnly inner levelOnly outer level# Threads

Sun Fire E25K, 72 dual-core UltraSPARC-IV processorsSpeedup of FIRE

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C33

Sparse MatrixSparse Matrix--VectorVector--Multiplication [Mflop/s]Multiplication [Mflop/s]
Apply Suitable Strategy!Apply Suitable Strategy!

#nonzeros
statically partitioned

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 16
threads

m
flo

p/
s

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 16

threads

m
flo

p/
s

Tigerton

Opteron

Clomp

ScaleMP
(RWTH)

parallel loop over #rows,
dynamic loop sched.

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C34

SHEMAT on ScaleMP (1 of 2)SHEMAT on ScaleMP (1 of 2)

• Simulation of Coupled Flow, Heat Transfer and Transport Interaction
• BiCGStab Solver with ILU0 Preconditioner
• Nested Parallelization with OpenMP
• Explicite binding in all inner parallel regions

0

100

200

300

400

500

600

01
x0

1
01

x0
2

01
x0

4
01

x0
8

02
x0

1
02

x0
2

02
x0

4
02

x0
8

04
x0

1
04

x0
2

04
x0

3
04

x0
4

04
x0

8
08

x0
1

08
x0

2
08

x0
3

08
x0

4

#threads outer team x #threads inner team

Se
co

nd
s

SGI F1200
4x2x2
3 GHz

Dell140
4x2x4
3.16 GHz

Harpertown
2x4
3 GHz

ScaleMP: ~ 3x on 4 nodes

SGI F1200 vSMP: 4 nodes with 2x4 cores
Dell 140 vSMP: 4 nodes with 2x2 cores
Harpertown: 1 nodes with 2x4 cores

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C35

SHEMAT on ScaleMP (2 of 2)SHEMAT on ScaleMP (2 of 2)

12,29,45,33,61,4speed-up versus 1 thread

8,86,83,82,61,0speed-up on board level

44424#core used per board

22214#threads inner level

2016841#threads outer level

981,61281,82264,93357,98664,8best effort timing

108421#boards

Cranking up the probem size for the new 13 node system:
13 nodes with 2 Harpertown Processors at 2.5 GHz

Speed-up across the nodes good (threads on outer level don’t interact much)
Speed-up withing the nodes bad (limited memory bandwidth)

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C36

OverviewOverview

• Why OpenMP
• Short OpenMP Introduction
• OpenMP on NUMA Machines
• OpenMP on Clusters
• Conclusion

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C37

ConclusionConclusion

• Scalable applications may need multiple levels of parallelization
• OpenMP suitable for a growing number of cores per node
• Combining MPI and OpenMP is getting more popular
• OpenMP on Clusters an alternative, if MPI is too hard to apply.

• Thread/Data Affinity is essential for OpenMP performance on
ccNUMA machines and even more on Clusters

• OpenMP is hardware agnostic
• Needs control of thread and data placement
• Needs data migration, explicite and/or automatic for irregular,

adaptive problems

Scalable OpenMP Programming Scalable OpenMP Programming –– D.an MeyD.an Mey Center for
Computing and Communication

C
C

C38

