Scalable OpenMP Programmin

11111 111

ATTACK DE LA COMPACTION OF

tim ante ante

14/

CONTRACTOR DE CONT

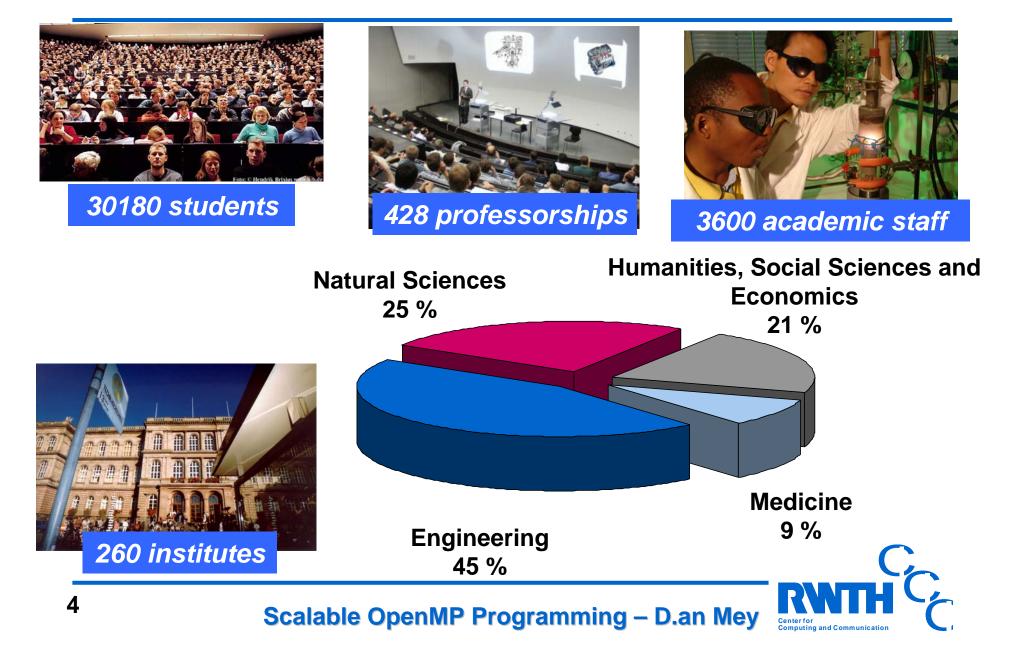
1111

TRANK!

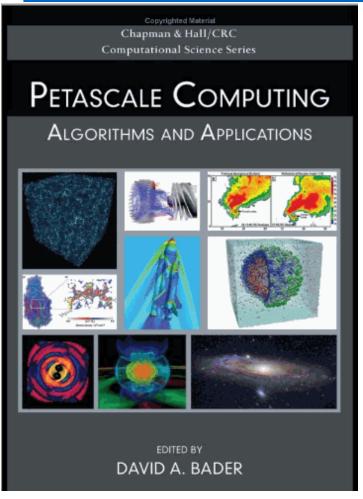
Center for Computing and Communication RWTH Aachen University, Germany

www.rz.rwth-aachen.de anmey@rz.rwth-aachen.de

- Why OpenMP
- Short OpenMP Introduction
- OpenMP on NUMA Machines
- OpenMP on Clusters
- Conclusion



- Why OpenMP
- Short OpenMP Introduction
- OpenMP on NUMA Machines
- OpenMP on Clusters
- Conclusion


RWTH Aachen University: Key Figures WT 06/07

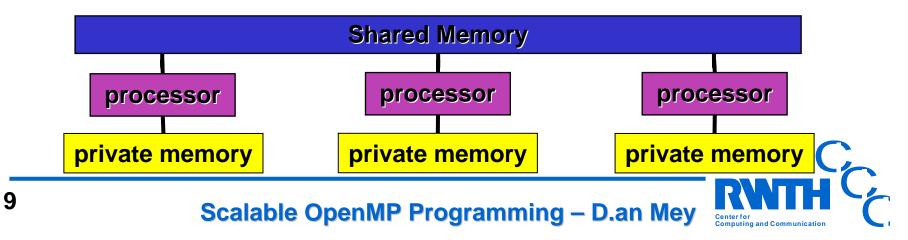
Why OpenMP?

- Large codes mainly in C++ and Fortran and some C
- Software lifetime measured in decades
- MPI is there to stay on clusters
 - Cannot always be applied easily if at all
 - Scalability may be limited due to underlying problem (geometry etc.)
 - "MPI only" may not be appropriate for "many cores" => MPI + OpenMP (hybrid)
- OpenMP is the alternative and the supplement to MPI
- Scalability of OpenMP limited by current machinery
- So far scalability explored on
 - Sun Fire E25K (144 cores UltraSPARC IV)
 - Sun UltraSPARC T2 (64 threads in one "Niagara 2" chip)
 - Intel Cluster OpenMP
 - ScaleMP "Virtual SMP"

Statistics from the "First Petascale Book"

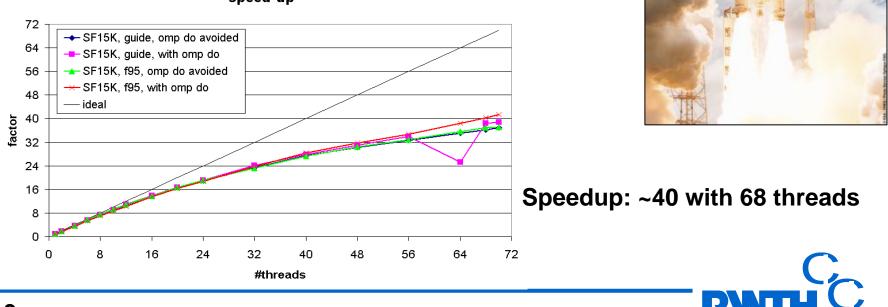
Keyword	Hits	Remarks
MPI		since 1994
		since 1997
OpenMP	150	with some 28 hits in our own
		chapter about OpenMP
threads	109	frequently in the context of OpenMP,
lineaus	109	57 in our chapter about OpenMP
C++	87	since 1983
Fortran	69	since 1957
Chapal	49	with some 22 hits in Zima's chapter
Chapel	49	about Chapel
UPC	30	since 2001
Co-array Fortran	27	since 1998
hybrid MPI/OpenMP	~26	hard to count
С	~20	hard to count
HPF	11	since 1993
X10	9	
Fortress	6	
Java	5	since 1995
Titanium	3	
posix threads	2	1995, Linux since 2003

Petascale Computing: Algorithms and Applications (Chapman & Hall/Crc Comp. Sci. Ser.) edited by David A. Bader , 2007, 528 pages, 24 contributions, 90 contributors



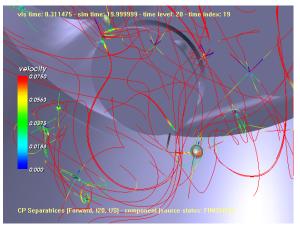
- Why OpenMP
- Short OpenMP Introduction
- OpenMP on NUMA Machines
- OpenMP on Clusters
- Conclusion

Memory Model of OpenMP


- OpenMP: Shared-Memory model
 - All threads share a common address space (shared memory)
 - Threads can have private data (explicit user control)
- Relaxed memory consistency
 - Temporary View ("Caching"): Memory consistency is guaranteed only after synchronization points, namely implicit and explicit flushes
 - Each OpenMP barrier includes a flush
 - Exit from worksharing constructs include barriers by default
 - Entry to and exit from critical regions include a flush
 - Entry to and exit from lock routines (OpenMP API) include a flush

Heat Flow Simulation with FEM - ThermoFlow60

Thomas Haarmann, Wolfgang Koschel, Jet Propulsion Laboratory, RWTH Aachen University


- simulation of the heat flow in a rocket combustion chamber
- Finite Element Method
- OpenMP Parallelelization
 - 30000 lines of Fortran
 - 200 OpenMP directives, 69 parallel loops,
 - 1 main parallel region, "orphaning" speed-up

Nested OpenMP for Critical Point Computation

Samuel Sarholz, Andreas Gerndt, Computing and Communication Center, RWTH Aachen University

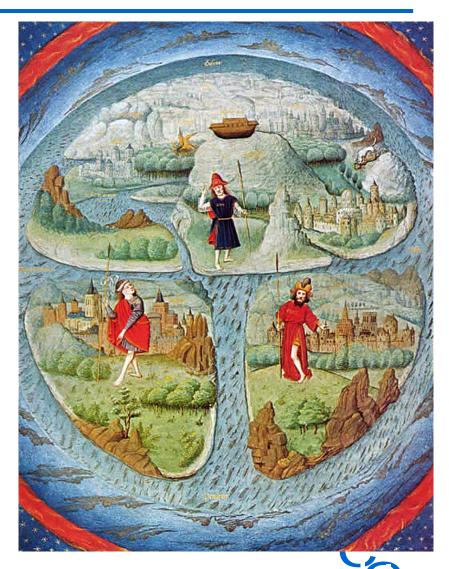
- Analysis of complex and accurate fluid dynamics simulations
- Extraction of Critical Points for VR (Location with velocity = 0)
- 25-100% efficiency with 128 threads on Sun Fire E25K (72 UltraSPARC IV dual core) depending on data set


```
// Loop over time levels
#pragma omp parallel for num_threads(nTimeThreads) schedule(dynamic,1)
for (curT=1; curT<=maxT; ++curT) {
    // Loop over Blocks
    #pragma omp parallel for num_threads(nBlockThreads) schedule(dynamic,1)
    for (curB=1; curB<=maxB; ++curB) {
    // Loop over Cells
    #pragma omp parallel for num_threads(nCellThreads) schedule(guided)
    for (curC=1; curC<=maxC; ++curC) {
    FindCriticalPoints (curT, curB, curC); // highly adaptive algorithm (bisectioning)
    } } }
</pre>
```

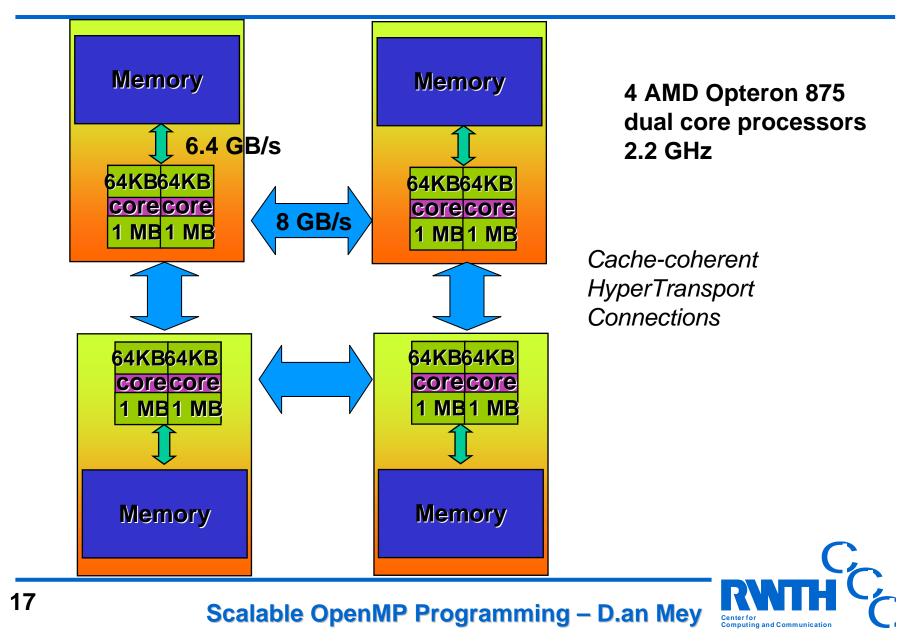

- Why OpenMP
- Short OpenMP Introduction
- OpenMP on NUMA Machines
- OpenMP on Clusters
- Conclusion

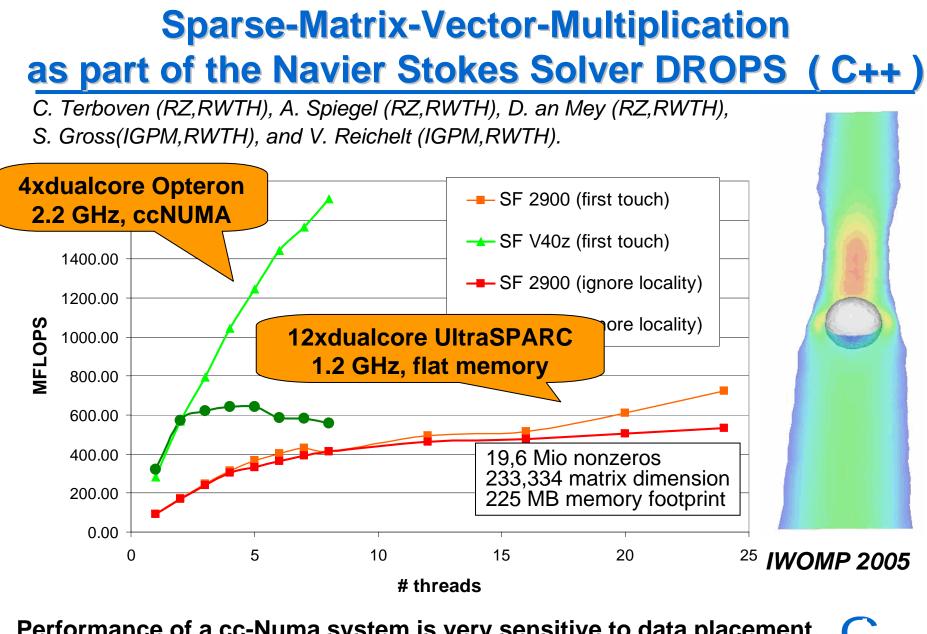
The Earth is Flat

OpenMP is Hardware agnostic It has no notion of data locality


=>

The Affinity Problem:


How to maintaining or improve the nearness of threads and their most frequently used data

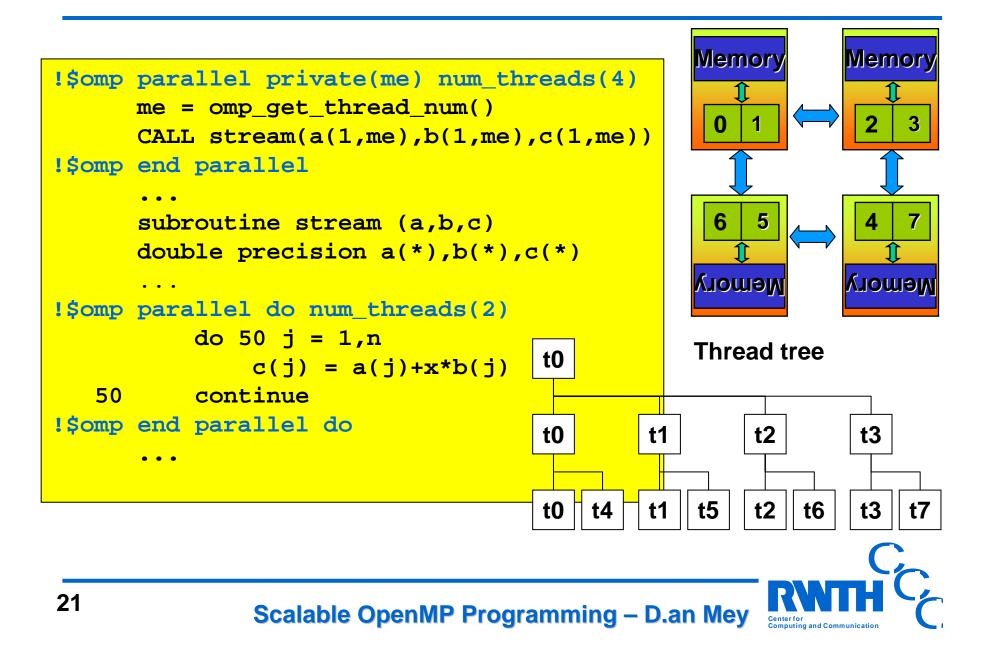

Or:

Where to run threads? Where to place data?

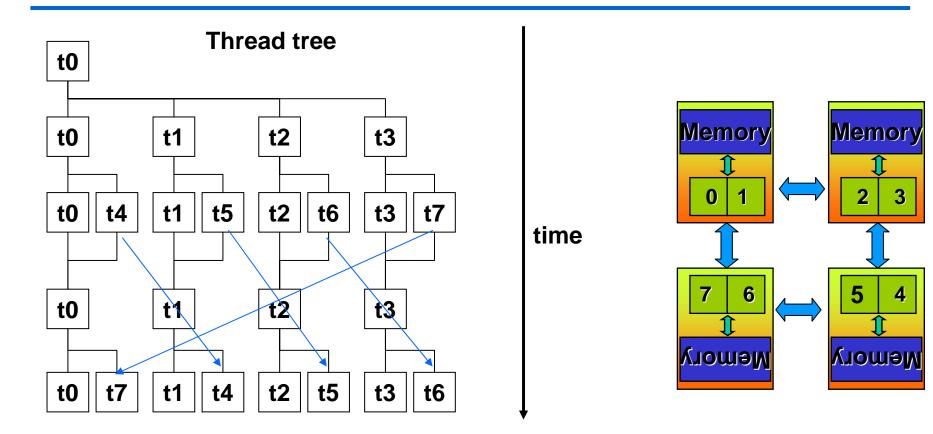
Sun Fire V40z (w/ dualcore AMD Opteron Chip)

Thread-Data-Affinity (1 of 2)

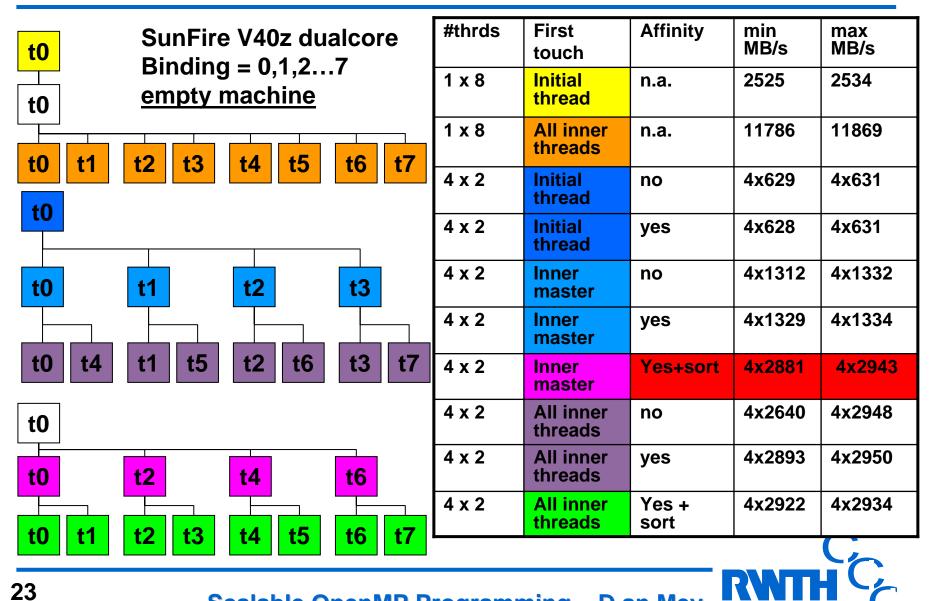
- In an ideal world the operating system together with the OpenMP runtime system would handle affinity automatically.
- In simple situations things might work well:
 - Exclusive access to the compute node
 - Single level of parallelism
 - Static program behaviour concerning thread and data usage
 - Initialization of data by the same thread which later uses the data ("first touch policy")



Thread-Data-Affinity (2 of 2)


- In more complicated situations, you may want to
 - Bind threads explicitly (How about multi user mode? Hybrid parallelization?)
 - Carefully initialize data
 - If necessarry and possible, migrate data (or threads)
 - Solaris MPO madvise() implements "next touch strategy"
 - Linux 2.6.18: move_pages() can be used to implement "next touch strategy" (RWTH: prototype by RZ, better solution by LfBS)
 - Windows: Migration is not yet supported)
- Nested OpenMP is implemented with thread pool
 - Inner teams' threads loose affinity to their data
 - Sun Studio on Solaris: SUNW_MP_THR_AFFINITY=TRUE

OpenMP nested, here: 4x2 threads

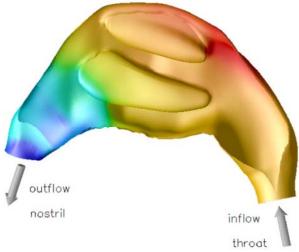


OpenMP nested

Typically OS threads are organized in a pool and may be allocated variably, thus loosing data affinity !

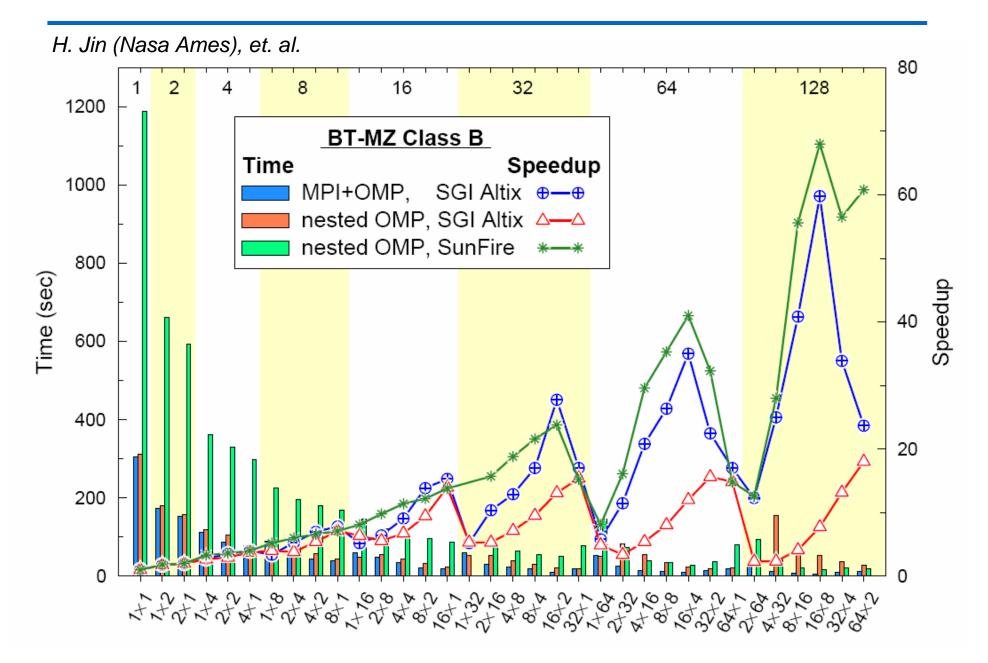
OpenMP nested

Scalable OpenMP Programming – D.an Mey


omputing and Communication

Simulating the Flow through the Human Nose TFS on Solaris

S. Johnson (PSP), C. lerotheou (PSP), A. Spiegel (RZ,RWTH), D. an Mey (RZ,RWTH), I. Hörschler (AIA, RWTH)


SUNW_MP_THR_AFFINITY=TRUE

Thread affinity + processor binding + data migration improved the performance by ~25 % on a Sun Fire E 25K

Be	fore	Improved thread affinity					
#threads	Speed-up	#threads	Speed-up	Strategy (best effort)			
64	threads per tea static schedul		threads per static schee	25 thread balancing 2-11 threads per team, static schedule, 16 threads in outer team		this s	
121	20	128	27	block grouping, 16 threads in outer team			

NPB Benchmark BT-MZ Class B

- Why OpenMP
- Short OpenMP Introduction
- OpenMP on NUMA Machines
- OpenMP on Clusters
- Conclusion

OpenMP on Clusters

- Multiple Approaches (based on MPI, on DSM ...) so far not very successful or uncomplete.
- o Intel Cluster OpenMP on Commodity Infiniband Cluster
 - Based on TreadMarks (twin pages, sending diffs,...)
 - Integrated in commercial compiler (C++ and F95)
 - Profits from OpenMP's memory model (relaxed consistency, temporary view of shared data, consistency enforced at well defined synchronization points.)
 - Need to explicitely mark some shared variables (sharable directive)
- o ScaleMP Versatile SMP™ Architecture
 - Aggregation of multiple x86 boards into one larger system
 - o Cache coherent connection through InfiniBand
 - $\circ~$ Modified IB stack and BIOS, caching strategies
 - o Single system image, virtual SMP machine
 - Aggregation of all I/O resources to the OS
- o Affinity matters!

EPCC OpenMP Micro-Benchmarks

J. M. Bull. Measuring Synchronization and Scheduling Overheads in OpenMP. 1999.							
	Tigerton	Opteron	CLOMP	ScaleMP (MEG)			
PARALLEL FOR 2 threads 16 threads	1.31 5.01	1.36 7.17	723.77 4342.82	264.83 717.77			
BARRIER 2 threads 16 threads	0.75 2.55	0.58 2.64	ers of magnitude 598.82 4062.67	144.45 429.35			
REDUCTION 2 threads 16 threads	1.56 5.68	2.05 25.77	932.18 4686.00	298.06 801.91			

Overhead in microseconds [us].

Binding: 1 Thread/board for CLOMP and ScaleMP(MEG) 8 Threads/board for CLOMP and ScaleMP(MEG)

enter for omputing and Communication

Stream Benchmark

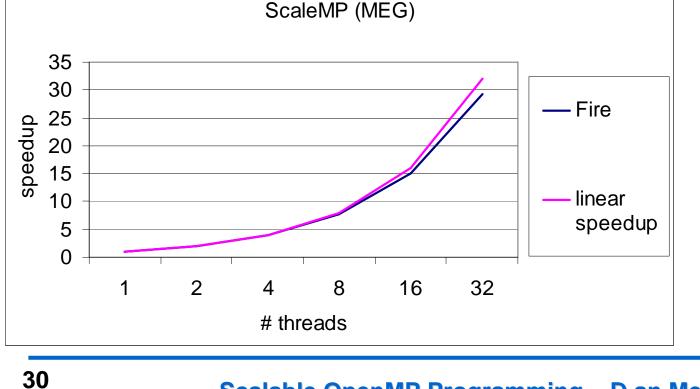
# threads	Tigerton	Opteron (*)	CLOMP	ScaleMP (RWTH)
1	2080.78	1882.24	3321.08	2674.13
2	4033.88	3665.35	6495.34	5330.22
4	7008.31 H	6674.57 igher Memory	10031.07 Bandwidth	10439.76
8	7156.56	9629.90	10344.97	17478.77
16	7508.01	8787.33	10473.24	18666.49

Bandwidth in MB/s. Scattered Binding.

(*) We see better performance on our 4-socket Opteron machine running Solaris

FIRE: Image Retrieval System Scales on ScaleMP (1 of 2)

- FIRE = Flexible Image Retrieval Engine
 - Compare the performance of common features on different databases
 - Analysis of correlation of different features


Thomas Deselaers and Daniel Keysers, RWTH 16: Chair for Human Language Technology and Pattern Recognition

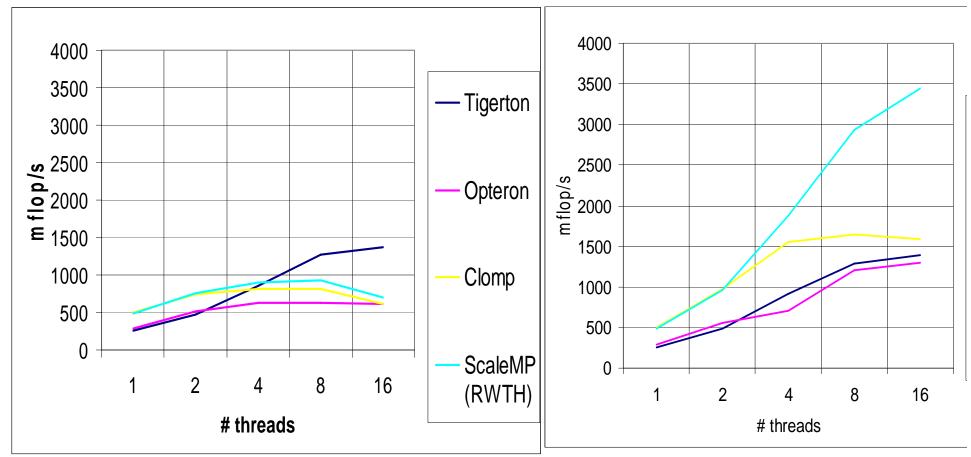
Center for

FIRE: Image Retrieval System Scales on ScaleMP (2 of 2)

On the new 13 node system: 13 nodes with 2 Harpertown Processors at 2.5 GHz

	Speed-up							
#threads	outer level	inner nested level best effort		#threads on inner x outer level				
1	1,0	1,0	1,0	1 x 1				
2	2,1	2,1	2,1	2 x 1				
4	4,0	3,9	4,1	2 x 2				
8	7,8	7,1	8,0	2 x 4				
16	14,8	12,6	15,6	2 x 8				
32	25,5		29,9	4 x 8				
64	45,4		53,2	4 x 16				
104			67,1	4 x 26				

Scalable OpenMP Programming – D.an Mey


31

FIRE: Image Retrieval System on 144-core SF E25K Nested OpenMP improves scalability

Speedup of FIRE	Sun Fire E25K, 72 dual-core UltraSPARC-IV processors						
# Threads	Only outer level Only inner level Nested Ope						
4		3.8					
8		7.6					
16	14.8	14.1	15.4				
32	29.6	28.9	30.6				
72	56.5		67.6				
144			133.3				

Sparse Matrix-Vector-Multiplication [Mflop/s] Apply Suitable Strategy!

SHEMAT on ScaleMP (1 of 2)

- Simulation of Coupled Flow, Heat Transfer and Transport Interaction
- BiCGStab Solver with ILU0 Preconditioner
- Nested Parallelization with OpenMP
- Explicite binding in all inner parallel regions

SHEMAT on ScaleMP (2 of 2)

Cranking up the probem size for the new 13 node system: 13 nodes with 2 Harpertown Processors at 2.5 GHz

#boards	1	2	4	8	10
best effort timing	8664,8	3357,9	2264,9	1281,8	981,6
#threads outer level	1	4	8	16	20
#threads inner level	4	1	2	2	2
#core used per board	4	2	4	4	4
speed-up on board level	1,0	2,6	3,8	6,8	8,8
speed-up versus 1 thread	1,4	3,6	5,3	9,4	12,2

Speed-up across the nodes good (threads on outer level don't interact much) Speed-up withing the nodes bad (limited memory bandwidth)

- Why OpenMP
- Short OpenMP Introduction
- OpenMP on NUMA Machines
- OpenMP on Clusters
- Conclusion

Conclusion

- Scalable applications may need multiple levels of parallelization
- OpenMP suitable for a growing number of cores per node
- Combining MPI and OpenMP is getting more popular
- OpenMP on Clusters an alternative, if MPI is too hard to apply.
- Thread/Data Affinity is essential for OpenMP performance on ccNUMA machines and even more on Clusters
- OpenMP is hardware agnostic
- Needs control of thread and data placement
- Needs data migration, explicite and/or automatic for irregular, adaptive problems

🖲 RZ - Parallel Programn	ning in Computational Engineerin	g and Science (PPC	ES) March 2009 - HPC	Tutorials Mozilla Fi	refox					
Datei Bearbeiten Ansicht	<u>C</u> hronik <u>L</u> esezeichen E <u>x</u> tras <u>H</u> ilfe									0 0 0 0
🔇 🖸 - C 🗙	http://www.rz.rwth-aachen	.de/go/id/sms/?lang=en					<mark>∭</mark> ☆ •	G• Google		🔎 🚇
🧕 Meistbesuchte Seiten 🠢 E	rste Schritte 🔝 Aktuelle Nachrichten	📄 Marder Alarm 阻	nttp://openmp.org/tw 74	http://www.rz.rwth-a 🗎	RZ Aktuelles					
	RNITH Rechen- und Kommunikationszentrum							🔍 Search 🚺 A-Z 🛛 🖾	🔍 Help Feedback	A R2 Internal ▲ RWTH
	Students Faculties and S		· · ·							
	<u>RZ</u> > <u>High Performance Comp</u>	uting > <u>Help, support</u>	, Tutorials, Events > <u>Tut</u>	torials and Events > Parall	el Programming in Co	mputational Eng	ineering and Science (PP	CES) March 2009 - H	PC Tutorials	
News	Parallel Programmi	ng in Computa	ational Engineer	ring and Science	(PPCES) Marc	ch 2009 - H	PC Tutorials -	,		
About Us Our services				Monday, March 2	3 - Friday, Marc	ch 27, 2009				<u>ire</u> : nat you enjoyed . Your feedback is
Computing Virtual Reality Events Help and Bugs	Ces	6	Kindly supported	intel?	Microso	oft 🔍	Sun microsystems		>>>	ire you find here
	Date	Time		Location						
	Monday, March 23 Tuesday, March 24 Wednesday, March 25 Thursday, March 26 Friday, March 27	14:00 - 09:00 - 09:00 - 09:00 - 09:00 -	17:30 17:30	<u>Center for Compu</u> RWTH Aachen Uni Seffenter Weg 23 52074 Aachen		<u>cation</u>				
	(*) We like to draw your in High Performance Comp			Simon (University of	California Berkeley	r) on Monday i	noming on <u>Future Dir</u>	ections		
	Introduction	 <u>Related</u> <u>Events</u> 	Sponsors	<u>Participants</u>	■ <u>Flyer</u> 🔀 & <u>Poster</u> 🔀	 Agenda 	 <u>Course</u> <u>Material</u> 			
	Questionnaire!!!	• <u>Links</u>	 <u>Travel</u> <u>Information</u> 	<u>Contact</u>						
	Introduction									