

GHCG 2013: OpenACC Programming Lab

Page 1 of 8

GHCG 2013: OpenACC
Programming Lab

May 2013
https://sharepoint.campus.rwth-

aachen.de/units/rz/HPC/public/Shared%20Documents/
ghcg-openacc-2013.tar.gz

Sandra Wienke, RWTH Aachen University
Timo Stich, NVIDIA

If you need help or have any question please do not hesitate to ask!

1. RWTH GPU Cluster Environment

The RWTH GPU Cluster comprises a total of 57 NVIDIA GPUs. These GPUs have compute capability 2.0 (Fermi

architecture) and enable features like double precision floating-point operations. The GPU Cluster runs Linux as operating

system and works with a module system such as the normal RWTH Compute Cluster. More information can be found on the

slides GPU-Cluster@RZ.

1.1. Login & Setup

Login to the RWTH Linux Compute Cluster first. You can either use your own laptop or one of the provided laptops. In the

handout How to login, see the sections Access to Laptop and Access to Cluster for more information.

Then, jump from the frontend node (e.g. cluster-x) of the Linux Cluster to one node of the GPU Cluster using the hpclab

account, the password and the GPU node name that are provided on the small sheet of paper:

ssh -Y hpclab<XY>@linuxgpus<AB>

During the following exercises, you will use the OpenACC compiler from PGI. Make it available by switching the default Intel

compiler to the PGI compiler:

module switch intel pgi

1.2. Compiling & Executing the Examples

In the OpenACC directory, you can find all sources for the programming lab, as well as the presented slides. The directory

structure looks as follows:

 slides

 lab

o exercises

o solutions

o openmp_reference

o cuda_c_reference

https://sharepoint.campus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/%0bghcg-openacc-2013.tar.gz
https://sharepoint.campus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/%0bghcg-openacc-2013.tar.gz
https://sharepoint.campus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/%0bghcg-openacc-2013.tar.gz

GHCG 2013: OpenACC Programming Lab

Page 2 of 8

In the exercises folder, you will find skeletons for all tasks that will be covered during this lab. You can choose between C

and Fortran versions. Use the Makefiles provided for compiling and executing your implemented programs:

make help

make [c]

make fc

make run [dev=<deviceID>]

make clean

 Get information
Compile for C
Compile for Fortran
Run (on certain device)
Clean

Since several users may use the same machine as you do and our GPUs can only be exclusively used by one user, it is

possible that the GPU is already occupied and you get a corresponding error message. If so, try to use the second GPU on

the node (make run dev=1) or try again after a few seconds.

If you want to run the OpenMP reference version some time, you have to switch back to the Intel compiler first. If you want

to run the CUDA reference version, you have to load the CUDA toolkit first. In summary:

 OpenACC: module switch intel pgi

 OpenMP: module switch pgi intel

 CUDA: module load cuda

2. Getting GPU Information

Before you start programming GPGPUs, it is always a good idea to examine your actual GPU hardware. To this end,

execute the command:

pgaccelinfo

If everything works properly, you will get a list of the most important features of your GPU. Complete Table 1 with the

Cluster GPU details.

Table 1: Output of pgaccelinfo

Feature Value

Number & name of devices 2 x Nvidia Quadro 6000

Number of cores Each 448 cores

CUDA compute capability (cc)
1
 2.0

3. Jacobi Iteration

During the following exercises, you will port a Jacobi solver to OpenACC. This Jacobi example solves a finite difference

discretization (5-point-stencil) of the Laplace equation (2D):

 ()

using the Jacobi iterative method. To this end, the Jacobi method starts with an approximation of the objective function f(x,y)

and reuses formerly-computed matrix elements to solve the current one (see Figure 2). It iterates only about the inner

elements of the 2D-grid (see Figure 1) so that the boundary elements are only used within the stencil. The solving process

is aborted if either the residual becomes very small or a certain number of iterations is achieved.

1
 The compute capability (cc) corresponds to the core architecture of the GPU and describes the features supported by the

CUDA-capable GPU. For instance, you need a device of cc 1.3 or higher to enable double precision floating point

operations. The PGI compiler calls this device revision number.

GHCG 2013: OpenACC Programming Lab

Page 3 of 8

If you encounter strange behavior during your implementation activities, it might make sense to check the results for errors.

For this purpose, we have prepared some functions for you. See Appendix Fehler! Verweisquelle konnte nicht gefunden

werden. for more details.

Figure 1: 5-point stencil

Figure 2: Computation of matrix element U(i,j)

3.1. Reference Versions

First, execute the OpenMP and the CUDA reference versions (cf. Section 1.2 Compiling & Executing the Examples):

a) Move to openmp_reference or cuda_c_reference, respectively.

b) Switch to the appropriate compiler or load the CUDA toolkit.

c) Run make and make run.

d) Write down the runtimes of these two reference versions in the corresponding lines of Table 2.

Table 2: Runtimes of different Jacobi implementations

Software Hardware Runtime [sec]

OpenMP 2x Intel Westmere (=12 cores)

CUDA C (simple) NVIDIA Quadro 6000

OpenACC-Kernels NVIDIA Quadro 6000 11.672557

OpenACC-Data NVIDIA Quadro 6000 0.515788

OpenACC-Loop NVIDIA Quadro 6000 0.528705

4. OpenACC Basics

4.1. Kernels Construct

Now, you start writing your first OpenACC program. Move to the folder 1-kernels and modify the source code files.

a) Use the acc kernels directives to parallelize the Jacobi loops.

You can find the solution code files in 1-kernels.

b) Compile your code and have a look at the compiler feedback.

a. Make sure that for all GPU kernels there is a line “Accelerator kernel generated”.

b. Is a reduction generated for the err value?

c. Check which data and how many elements are moved forth and back to the GPU.

main:

 57, Generating present_or_copyin(U[0:][0:])

 Generating present_or_copyout(Unew[1:4094][1:4094])

 Generating NVIDIA code

 Generating compute capability 2.0 binary

 58, Loop is parallelizable

 60, Loop is parallelizable

 Accelerator kernel generated

 ()
 () () () ()

 U(i,j) U(i+1,j) U(i-1,j)

U(i,j-1)

U(i,j+1)

GHCG 2013: OpenACC Programming Lab

Page 4 of 8

 58, #pragma acc loop gang /* blockIdx.y */

 60, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

 64, Max reduction generated for err

 68, Generating present_or_copyout(U[1:4094][1:4094])

 Generating present_or_copyin(Unew[1:4094][1:4094])

 Generating NVIDIA code

 Generating compute capability 2.0 binary

 69, Loop is parallelizable

 71, Loop is parallelizable

 Accelerator kernel generated

 69, #pragma acc loop gang /* blockIdx.y */

 71, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

c) Run your code. How fast does this version execute? Write down the runtime in Table 2.

4.2. Tools

As you might have recognized, your first OpenACC version is kind of slow. In this task, you will figure out why. To this end,

using profiling tools are a good approach.

PGI Timing Environment

The PGI compiler enables a simple way to get some basic timing information of your code. You just have to set the

environment variable PGI_ACC_TIME to a positive integer. Using the Makefiles provided, you can enable this option by

running your code with:

make run time=1

a) Compile your code and run it using the timing flag mentioned above. There might be introduced a small runtime

overhead for collecting corresponding data.

b) Examine the output at the end of the program run. How much time was spent for the kernel execution and how

much time was spent for the data transfers?

Compared to the computational kernels (lines 60 & 71), the time for the data transfers (lines 57,68,774) is approx. 8 times

higher.

Compiler feedback for 20 iterations:

 main NVIDIA devicenum=0

 time(us): 2,019,559

 57: data copyin reached 20 times

 device time(us): total=445,492 max=22,281 min=22,269 avg=22,274

 60: kernel launched 20 times

 grid: [32x4094] block: [128]

 device time(us): total=132,133 max=6,648 min=6,595 avg=6,606

 elapsed time(us): total=132,359 max=6,660 min=6,606 avg=6,617

 60: reduction kernel launched 20 times

 grid: [1] block: [256]

 device time(us): total=5,389 max=270 min=269 avg=269

 elapsed time(us): total=5,594 max=281 min=278 avg=279

 68: data copyin reached 20 times

 device time(us): total=445,408 max=22,277 min=22,265 avg=22,270

 68: data copyout reached 20 times

 device time(us): total=456,874 max=22,851 min=22,838 avg=22,843

 71: kernel launched 20 times

 grid: [32x4094] block: [128]

 device time(us): total=77,441 max=3,876 min=3,871 avg=3,872

 elapsed time(us): total=77,676 max=3,888 min=3,882 avg=3,883

 77: data copyout reached 20 times

 device time(us): total=456,822 max=22,849 min=22,836 avg=22,841

GHCG 2013: OpenACC Programming Lab

Page 5 of 8

Visual Profiler

Another way to analyze the performance of your code is NVIDIA’s Visual Profiler that ships with the CUDA toolkit. It

provides a graphical user interface and more detailed information on kernel executions. If you have any problems with the

Java Runtime, set export JAVA_TOOL_OPTIONS=-Xmx4096m.

a) If not already done, load the CUDA toolkit (check with module list): module load cuda

b) Start the Visual Profiler: nvvp &

c) Then create a new session.

d) In the Executable Properties, choose your executable file.

e) Click Next and Finish.

f) In the left pane, click on MemCpy(HtoD) and MemCpy(DtoH). Now, you can see the duration of the Memcpy

command on the right hand side in the tab Properties. If you click on the different kernels that are listed under

Compute (left pane), the kernel duration is displayed in the properties tab as the sum of all kernel executions.

g) In the timeline, can you see where data is moved between host and device? It might be necessary to zoom into

the timeline. When do we want to have the data copied between host and device?

If you need help in understanding the plots/tables, ask one of our team members.

You can open the session laplaceProfile as solution profile. You can see in the timeline that after each kernel

computation a lot of data is copied from the device to the host and vice versa. Since we only want to copy the matrix once

and not in every iteration of the while loop, we need to eliminate these extra copies.

It is also possible to get simple profile information from the command line stored in a log file.

a) Set the environment variable: export COMPUTE_PROFILE=1

b) Run your program. You will get the log file cuda_profile_<DEVID>.log.

c) Open this log file and grep for “_gpu”.

d) Which information do you see?

e) Unset the environment variable again (either by setting its value to “nothing” or to “0”).

You can find a sample cuda_profile_0.log file in the folder. It gives you the GPU time and CPU time for each data

transfer and kernel invocation. The following is an excerpt of this log file:

method,gputime,cputime,occupancy

method=[memcpyHtoDasync] gputime=[25598.207] cputime=[8.000]

method=[memcpyHtoDasync] gputime=[1.440] cputime=[7.000]

method=[main_60_gpu] gputime=[6634.560] cputime=[14.000] occupancy=[0.667]

method=[main_64_gpu_red] gputime=[264.736] cputime=[5.000] occupancy=[0.167]

method=[memcpyDtoHasync] gputime=[2.400] cputime=[6901.000]

method=[memcpyDtoHasync] gputime=[33452.895] cputime=[6.000]

method=[memcpyHtoDasync] gputime=[25621.633] cputime=[8.000]

method=[main_71_gpu] gputime=[3868.640] cputime=[8.000] occupancy=[0.667]

method=[memcpyDtoHasync] gputime=[33455.457] cputime=[5.000]

PGI OpenACC Debugging

At the moment, one big problem of PGI’s OpenACC is the lack of debugging support. As this might change in future, today,

you have only limited capabilities to see what is going on in your PGI OpenACC program.

a) Set the following environment variable: export ACC_NOTIFY=3

b) Run your program. Which information do you get? Which grid and block dimensions are used for the first kernel?

Does it fit to the compiler feedback?

c) Afterwards, unset the environment variable again (either by setting its value to “nothing” or to “0”).

Remark: Of course, you can use any common debugger to investigate problems in the non-kernel source code.

The output is stored in acc_notify.log. Here is an excerpt. You can see which data was moved and whether a code

region was actually offloaded to the accelerator. You can further see details on this kernel (e.g. function and line).

Additionally, you can figure out on which GPU device the kernel did run and which launch configuration were used. The

information on the queue is only important if you use asynchronous kernel executions.

upload CUDA data

file=/rwthfs/rz/cluster/home/sw702031/Projekte/GPU/repos/examples/ghcg2013/OpenACC/lab/s

GHCG 2013: OpenACC Programming Lab

Page 6 of 8

olutions/1-kernels/laplace.c function=main line=57 device=0 variable=U bytes=134217728

launch CUDA kernel

file=/rwthfs/rz/cluster/home/sw702031/Projekte/GPU/repos/examples/ghcg2013/OpenACC/lab/s

olutions/1-kernels/laplace.c function=main line=60 device=0 grid=32x4094 block=128

sharedbytes=2048

4.3. Data Transfers

As starting point for the second OpenACC programming task, you can either use your source code that you have just

created or you can move to the folder 2-data and work on the source files located there.

a) Use the acc data directive to remove the excess of data transfers. You may also use the present clause.

b) Examine the compiler feedback. Can you see any changes?

You can find the solution code files in 2-data.

c) How fast is your program now? Write down the runtime in Table 2.

Now, the data is copied only at the beginning of the while loop (line 53) and at its end:

main:

 53, Generating create(Unew[0:n][0:m])

 Generating copy(U[0:n][0:m])

 60, Generating present_or_copy(U[0:n][0:m])

 Generating present_or_create(Unew[0:n][0:m])

 Generating NVIDIA code

 Generating compute capability 2.0 binary

 61, Loop is parallelizable

 63, Loop is parallelizable

 Accelerator kernel generated

 61, #pragma acc loop gang /* blockIdx.y */

 63, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

 67, Max reduction generated for err

 71, Generating present_or_copy(U[0:n][0:m])

 Generating present_or_create(Unew[0:n][0:m])

 Generating NVIDIA code

 Generating compute capability 2.0 binary

 72, Loop is parallelizable

 74, Loop is parallelizable

 Accelerator kernel generated

 72, #pragma acc loop gang /* blockIdx.y */

 74, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

5. OpenACC Tuning

Now that you have a basic OpenACC version of the Jacobi solver, you should think about some further tuning steps…

Sometimes, it is a good idea to take back the responsibility of finding the parallelism from the compiler to the programmer

(especially if the compiler ignores some of your hints). One approach may be to replace the kernels construct by the

parallel construct. Modify/ copy your self-created source code or use the files in 3-loop.

You should also try to experiment with different loop schedules since it can strongly affect performance (depending on the

application).

Note: Due to a bug in the recent PGI Compiler (13.3), the specification of the number of gangs will be ignored. But keep in

mind that this might also be a tuning opportunity. Especially, computing multiple elements per CUDA thread can reduce

overheads such as address calculation (depending on your code). Additionally, the nesting of identical worksharing types is

GHCG 2013: OpenACC Programming Lab

Page 7 of 8

not allowed with the parallel construct right now so that you cannot use more-dimensional grids and blocks. The latter

might change with the next release of the OpenACC specification (compare tile clause).

a) Apply the parallel constructs. Note that you now have to specify all loop work-sharing constructs as well.

You can find the solution code files in 3-loop.

b) Specify the reduction manually.

c) Think about a different parallelization strategies (loop schedule): Try to distribute the work of the outer loops to the

GPU multiprocessors (CUDA blocks, gangs) in 1D grids and the work of the inner loops to the cores of the

multiprocessors (CUDA threads, vector) in 1D blocks.

d) Try also out different vector lengths.

e) You can see the grid (gangs) and block (vector) sizes with ACC_NOTIFY or using the Visual Profiler (see

section 4.2). Try it out.

f) What is the best performance you can achieve? Write down the runtime in Table 2.

[..]

#pragma acc parallel present(U,Unew) reduction(max:err) vector_length(64)

#pragma acc loop gang

 for(int i = 1; i < n-1; i++)

 {

#pragma acc loop vector

 for(int j = 1; j < m-1; j++)

 {

 Unew[i][j] = 0.25 * (U[i][j+1] + U[i][j-1]

 + U[i-1][j] + U[i+1][j]);

 err = fmax(err, fabs(Unew[i][j] - U[i][j]));

 }

 }

[..]

Here, the vector length of 64 delivers the best performance.

6. OpenACC & CUDA Libs (supplementary task)

Sometimes, you already have a single optimized CUDA/ OpenCL kernel programmed or you need to use a tuned CUDA

library (such as CUBLAS, CUSPARSE or CUFFT). If you want to use the OpenACC API for the rest of your code

acceleration, the OpenACC kernels have to interact with the data produced by the CUDA kernel/ libraries. You will

implement this during this exercise.

Have a look at the appendix of the OpenACC slides that explain the usage of low-level kernels or libraries.

The scenario for this exercise is the filtering of a 1D signal. The implementation works by first transforming the signal and

the filter in the fourier domain and doing a point-wise multiplication followed by an inverse fourier transform of the filtered

signal. The fourier transforms are implemented using the Nvidia CUFFT library. The point-wise multiplication should be an

OpenACC kernel. You can find the skeleton for this task in folder 4-lib.

a) Implement a complex multiply and scale of two complex arrays with OpenACC (function

complexPointwiseMulAndScale()in cufft_acc.c). Save the filtered result in signal.

 Hint: We have the two arrays signal and filter_kernel which contain complex numbers:

real parts: array[2*i] i=0,..,n-1

imaginary parts: array[2*i+1]

 Reminder

o Multiplication of two complex numbers: (x + yi)(u + vi) = (xu – yv) + (xv + yu)i.

o Multiplication of a real and a complex number: (x + yi) u = xu + yu i

 Hint: Use the deviceptr clause that enables access on externally allocated and managed memory inside

OpenACC code.

b) Make sure that the correctness test at the end is passed.

GHCG 2013: OpenACC Programming Lab

Page 8 of 8

You can find the solution file in the folder 4-lib. The complexPointwiseMulAndScale function could look like the

following:

#pragma acc data deviceptr(signal, filter_kernel)

 {

#pragma acc kernels loop independent present(signal, filter_kernel)

 for (int i = 0; i < 1000; i++) {

 float ax = signal[2*i];

 float ay = signal[2*i+1];

 float bx = filter_kernel[2*i];

 float by = filter_kernel[2*i+1];

 float s = 1.0f / n;

 float cx = s * (ax * bx - ay * by);

 float cy = s * (ax * by + ay * bx);

 signal[2*i] = cx;

 signal[2*i+1] = cy;

 }

 }

