

PPCES 2018: MPI Lab

27.02.2018 Page 1 of 6

PPCES 2018: MPI Lab

12–13 March 2018
Joachim Protze, protze@itc.rwth-aachen.de

Marc-Andre Hermanns, hermanns@jara.rwth-aachen.de

Portions thanks to:
Christian Iwainsky, Sandra Wienke, Hristo Iliev

Synopsis

The purpose of this hands-on lab is to make you familiar with the basic concepts of MPI. Tasks 0–3 will introduce you to the

principles of basic point-to-point communication. Tasks 4–6 will practice the usage of collective communications and MPI in

general. Furthermore, you will get to know Vampir and Cube, which are generic performance analysis tools, with Vampir

also very well suited for visualisation of message passing pattern of parallel algorithms.

Note: the flow of exercises does not strictly match the structure of the course. It is not required that you complete the

exercises in the order in which they appear in this document.

Before You Start

Before you start, log into one of our Linux cluster frontends (login or login2) using FastX. Then, download the MPI lab

archive (if the link does not work, check out the PPCES web site) and extract it to a suitable location (e.g. in a directory

named MPILab) using the following command:

tar -xvf PPCES2017_MPI_Lab.tar.bz2

The lab archive contains skeleton code for the exercises described below. Intermediate solutions are provided where

appropriate. Sample solutions to all problems are also provided in the solutions folder. We would advise you to not look at

the solutions before you have tried your best to solve each exercise on your own.

Each problem comes with a Makefile with the following targets:

make [release | debug] # build the program

make run [NPROCS=<#processes>] # run the program

make clean # clean the directory

make vampir # trace the program and start Vampir

make cube # profile the program and start Cube

For exercise 6 only the following targets are available in addition to the common set:

make runParallel [NPROCS=<#processes>] # run the program in parallel (make run = serial)

make runReports [NPROCS=<#processes>] # profile with Allinea Performance Reports

mailto:protze@itc.rwth-aachen.de
mailto:hermanns@jara.rwth-aachen.de
https://doc.itc.rwth-aachen.de/download/attachments/30704147/PPCES2017_MPI_Lab.tar.bz2?version=1&modificationDate=1490115903110&api=v2
https://doc.itc.rwth-aachen.de/download/attachments/30704147/PPCES2017_MPI_Lab.tar.bz2?version=1&modificationDate=1490115903110&api=v2

PPCES 2018: MPI Lab

27.02.2018 Page 2 of 6

0. Hello, MPI!

The purpose of this exercise is to get you familiar with the very basics of MPI programming on the RWTH Compute cluster.

Start with the minimal program in directory 0_helloMPI and add a line that makes each process print its rank and the total

number of processes in the MPI program. Where should the appropriate lines be placed? Use the following commands to

compile and run your program:

C/C++: Fortran:

$MPICC -o hello hello.c $MPIFC -o hello hello.f90

$MPIEXEC -n 4 ./hello $MPIEXEC -n 4 ./hello

1. Ping Pong

One basic MPI program using point-to-point communication is the “ping pong” between two MPI processes. A ping-pong

program skeleton can be found in directory 1_pingPong. Complete the source code parts marked with “TODO”.

Note: You can use Vampir to visualise the behaviour of your code as long as there are no deadlocks.

a) Make the first process of the MPI program transmit its input to the second process. The second process should

then print the received value and send it back with an opposite sign to the first process, which should again print

the received value.

b) Make each rank send an individually and randomly selected number of elements. Let the other process know in

advance the size of the array by explicitly sending it as an additional message.

c) What is the behaviour of the program for NPROCS=1 and NPROCS>2? Modify it to display an error message

when started with too few processes and to execute properly with more than two processes.

d) Implement part b) of the assignment without explicitly sending the number of elements.

e) Bonus task: Implement a loop to send/receive messages with different sizes. How does the message size

influence the time being spent in MPI functions? You may use MPI_Wtime() to measure wall-clock time and go

with array size as high as 226 elements to make the impact of the data size clearly visible.

2. More Sending and Receiving

One basic usage of MPI is to send and receive data. This however can lead to unexpected situations if not done correctly. A

send-receive skeleton code can be found in directory 2_sendReceive.

a) Take a look at the given program source code and execute it with two processes. What is happening? Hint: You

can abort the program execution by hitting Ctrl-c.

b) Modify the program to use MPI_Send() and MPI_Recv() such that it becomes a correct MPI program and

completes execution.

c) Can the send and receive operations be replaced with a single MPI call? Use the correct operation to replace the

send and receive pair.

d) Modify your code to utilise non-blocking communication operations.

e) Change the code to work with more than 2 MPI processes. In this case the messages should be sent to and

received from the next higher rank. Hint: Will a special treatment be needed for the last rank?

3. Count-Down Ring

Using send and receive operations, implement a round-robin communication that passes along an integer value (the time

left on a ticking timer), starting with the skeleton code given in directory 3_countdownRing. Each time the value is

received, it should be decremented by a random number (use the function random_dec). Once the value becomes zero or

negative, the process that is currently updating it should notify all other processes of its rank. Every process should then

display the rank of the process where the counter reached zero. You can supply the initial countdown value like that:

make run N=<countdown>

An example output for this exercise follows (note how message lines from different ranks might become intermixed):

PPCES 2018: MPI Lab

27.02.2018 Page 3 of 6

4. Controller-Worker Pattern

The controller-worker pattern is an often-used approach to solving the work imbalance problem in MPI applications. A small

number of processes (the controllers; usually just one) distribute work items to one or more processes (the workers). In this

exercise, you should implement this pattern using point-to-point communication routines.

The trapezoid numeric function integration rule serves as basis for this exercise. The following formula is parallelised:

∫ 𝑓(𝑥)
𝑥1

𝑥0

𝑑𝑥 ≈
𝑥1 − 𝑥0

2𝑁
∑(𝑓(𝑥𝑖) + 𝑓(𝑥𝑖+1)); 𝑥𝑖 = 𝑥0 + 𝑖 ∗

𝑥1 − 𝑥0

𝑁

𝑁−1

𝑖=0

To test this integration algorithm, we implement one of the integral representations of π (to simulate an irregular problem,

we also introduce an artificial delay proportional to x2; see func):

π = 4 ∫
𝑑𝑥

1 + 𝑥2

1

0

The skeleton code for this assignment is located in directory 4_integration.

a) Compile and then execute the given program with different number of MPI processes, e.g. with NPROCS=2,

NPROCS=4, etc. Why is no speedup being observed? You can trace the message passing process using Vampir

to get an insight.

b) Modify the given program so that the work is done correctly in parallel.

c) Refactor (rewrite) the program and place all controller code into a function called controller and all worker code

into a function called worker. Have rank 0 call controller and every other process call worker. The program

should still compute the integral in parallel with the work distribution occurring in the controller function and the

work processing in the worker function.

d) Distributing the function evaluation at individual points is not very efficient. Modify the code to work on intervals

(blocks of points) instead of on individual points. What effect does the block size have on the work balance?

> make run NPROCS=3 N=45
Counting down from 45
Process 1 has received the bomb (38 on the clock) and is still alive!
Process 2 has received the bomb (35 on the clock) and is still alive!
Process 0 has received the bomb (31 on the clock) and is still alive!
Process 0 has received the bomb (13 on the clock) and is still alive!
Process 1 has received the bomb (24 on the clock) and is still alive!
Process 1 has received the bomb (6 on the clock) and is still alive!
Process 2 has received the bomb (17 on the clock) and is still alive!
Process 2 has received the bomb (4 on the clock) and is still alive!
Process 0 lost
I am process 0 and 0 is the loser
I am process 2 and 0 is the loser
I am process 1 and 0 is the loser

PPCES 2018: MPI Lab

27.02.2018 Page 4 of 6

5. Your Own Collective Communication

Often data in parallel algorithms needs to be moved around in a very structured fashion, e.g. broadcasted from a single rank

to all ranks or distributed in chunks among the ranks. MPI provides for that purpose specialised operations called collective

communication operations (collectives for short). In this exercise you will implement your own collectives, namely broadcast,

scatter, gather, all-to-all, and sum reduction, using only the point-to-point MPI operations. The code skeletons are located in

directory 5_myGlobals. Those come with a built-in debugging mechanism that allows you to observe the data distribution. If

you specify a process rank as an argument to the executable, that process will dump its data structures so you can

investigate the communication behavior (if not specified, rank 0 will be debugged).

a) Implement the bcast_int function. It should distribute an integer value from the process with rank equal to root to

all other processes in the communicator comm. After the operation completes, all ranks should hold the same

integer value as the one that rank root has.

b) Implement the scatter_int function. This function should distribute the content of the send buffer in process root

to all ranks in the communicator. The first sendcnt integers of sendbuffer should become available in the receive

buffer of rank 0, the next sendcnt integers at rank 1, and so forth.

c) Implement the gather_int function which is the reverse operation of scatter_int. It should collect recvcnt integers

from each rank in the communicator and store them in the receive buffer of rank root. The received data chunks

should be ordered according to the rank of the process where they originate.

d) Implement the alltoall_int function. Its operation is a combination of a scatter and a gather. Rank 0 scatters its

data to ranks 0, 1, …, nProcs-1, then rank 1 scatters to 0, 1, …, nProcs-1 and so forth. Receivers should order the

pieces following the rank of the sender.

e) Implement the sum_int function. It should collect at process root a single integer value from each process in the

communicator comm and sum all collected values. Use it to sum the ranks of all processes.

Note: 0 + 1 + … + numProcs-1 = numProcs*(numProcs-1)/2; compare it with the value your code computes.

f) Now add the corresponding collective MPI calls where noted. Compare the results?

g) You may have observed that the output has been shuffled. Consider the potential reasons for it. Try to fix it.

Note: Don’t forget to test your code with different process counts. Be careful when a process sends data to itself.

6. Your Own Parallelisation

The program in directory 6_jacobi solves numerically using the Jacobi method with successive over-relaxation a finite

difference version of the screened Poisson equation:

(∇2 − 𝛼)𝑢 =
𝑑2

𝑑𝑥2
𝑢 +

𝑑2

𝑑𝑦2
𝑢 − 𝛼𝑢 = 𝑓

In this exercise you must apply everything you have learnt up to now in order to parallelise the given serial version of the

Jacobi solver. The code for the assignment is located in directory 6_jacobi.

In general, the algorithm works as follows:

a. u_old is initialised to zero

b. A new approximation of u is computed at every point (a discretisation point in your solution vector) based on the

previous approximation u_old (the whole procedure is implemented in function one_jacobi_iteration)

c. u and u_old are swapped.

d. Steps b) and c) are repeated over and over until the method converges (i.e. values no longer change significantly

after the Jacobi iteration) or the pre-set maximum number of iterations is reached.

PPCES 2018: MPI Lab

27.02.2018 Page 5 of 6

.

Depending on how confident you feel about programming with MPI, you can either start with the already partially

parallelised jacobi.c / jacobi.f90 and complete the TODOs in it or you can try to do the full parallelisation from scratch. We

have provided the original sequential version of the solver as jacobi_serial.c / jacobi_serial.f90. You may find the following

guiding questions helpful:

What are the data dependencies for the computation of each value?

What communication method is suitable for computing the error?

How would you partition the domain? Is there a difference between FORTRAN and C (in case you know both)?

Can you handle the case where the domain size is not divisible by the number of MPI processes?

Can you instead easily partition the domain across the other dimension?

Performance Profiling

Once you are ready with the parallelisation of the Jacobi solver, you can examine its performance using a multitude of tools

available on the RWTH Compute Cluster. Among those tools are: Allinea Performance Reports, Vampir, and Cube. The

easiest to use is Allinea Performance Reports (APR), which presents in a very concise form an overview of the program

performance characteristics. To generate a report, use the following command:

make runReports

This will first recompile the executable file and link in the APR library, and then run it with four MPI processes (unless

NPROCS is set). Once the program execution is complete, the report will be available in both text and HTML formats. Use a

web browser (e.g., firefox) to see the output. Identify how much time was spent in MPI operations and how much of the

compute time was spent in vector operations. Is the application memory bound? Which recommendations does the report

give you to improve the performance of the application?

Experiment with Cube (make cube) and Vampir (make vampir). Can you obtain with those tools the same information as

the one provided by APR?

(xStart,yStart)

 maxXCount

m
ax

YC
o

u
n

t

deltaX

d
el

ta
Y

Data Point

Boundary Point

Stencil

PPCES 2018: MPI Lab

27.02.2018 Page 6 of 6

7. Using the Batch System (optional)

Long-running computations and benchmarks should be submitted as jobs to our batch system LSF1. Jobs are represented

by batch scripts – shell scripts containing all commands which need to be executed together with a list of resource

requirements and options for the batch system. The bsub command is used to submit jobs. It is also possible to provide

options as command-line arguments to bsub. In directory 7_batch you will find an example script submit.sh together with

the sample MPI program jacobi.c. The batch script could (and should!) be tested interactively before submission. The

interactive test lets you more easily spot eventual errors without the implied waiting time of the batch system. To run the

batch script interactively, use the following commands (don’t forget to compile the program first):

chmod 755 submit.sh

./submit.sh

Note: The program will execute with two processes only as the value of the environment variable FLAGS_MPI_BATCH

depends on the execution environment. For interactive testing you have to set this variable:

FLAGS_MPI_BATCH="-np 4" ./submit.sh

After you have tested your script, you can submit it to the batch system:

bsub < submit.sh

Notice the input redirection symbol. It is very important: if you omit it, the job will be queued but none of the LSF options

specified inside it will be respected. The batch system then responds to the submission with the job ID of the queued job:

Job <xxxxxx> is submitted to default queue <qqqqqq>.

The status of all your jobs can be monitored by the bjobs command. Only pending (PEND) and running (RUN) jobs as well

as jobs in error state are shown; finished jobs are not listed. It might take (quite) some time before the job starts!

You can cancel a job at any time with the bkill command:

bkill xxxxxx

where xxxxxx is the job numeric ID from the output of the bsub command (with an ID of 0 – kills all jobs of the current user).

1 More information about batch jobs can be found in the IT Center documentation Wiki

https://doc.itc.rwth-aachen.de/display/CC/Using+the+batch+system

