
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Introduction to

Parallel Performance Engineering with Score-P

Marc-André Hermanns
Jülich Supercomputing Centre

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Cray)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance factors of parallel applications

■ “Sequential” performance factors
■ Computation

 Choose right algorithm, use optimizing compiler

■ Cache and memory
 Tough! Only limited tool support, hope compiler gets it right

■ Input / output
 Often not given enough attention

■ “Parallel” performance factors
■ Partitioning / decomposition

■ Communication (i.e., message passing)

■ Multithreading

■ Synchronization / locking
 More or less understood, good tool support

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 2

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 3

• Calculation of metrics

• Identification of performance
problems

• Presentation of results

• Modifications intended to
eliminate/reduce performance
problem

• Collection of performance data

• Aggregation of performance
data

• Prepare application with
symbols

• Insert extra code
(probes/hooks)

Preparation Measurement

AnalysisOptimization

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of the code

■ Programmers typically spend 20% of their effort to get 80% of the total speedup

possible for the application
 Know when to stop!

■ Don't optimize what does not matter
 Make the common case fast!

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 4

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Metrics of performance

■ What can be measured?
■ A count of how often an event occurs

■ E.g., the number of MPI point-to-point messages sent

■ The duration of some interval
■ E.g., the time spent these send calls

■ The size of some parameter
■ E.g., the number of bytes transmitted by these calls

■ Derived metrics
■ E.g., rates / throughput

■ Needed for normalization

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 5

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example metrics

■ Execution time

■ Number of function calls

■ CPI
■ CPU cycles per instruction

■ FLOPS
■ Floating-point operations executed per second

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 6

“math” Operations?
HW Operations?

HW Instructions?
32-/64-bit? …

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Execution time

■ Wall-clock time
■ Includes waiting time: I/O, memory, other system activities

■ In time-sharing environments also the time consumed by other applications

■ CPU time
■ Time spent by the CPU to execute the application

■ Does not include time the program was context-switched out
■ Problem: Does not include inherent waiting time (e.g., I/O)

■ Problem: Portability? What is user, what is system time?

■ Problem: Execution time is non-deterministic
■ Use mean or minimum of several runs

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 7

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Inclusive vs. Exclusive values

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 8

Inclusive Exclusive

int foo()
{
int a;
a = 1 + 1;

bar();

a = a + 1;
return a;

}

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling

■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization

■ Tracing

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 9

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Sampling

▪ Running program is periodically interrupted to take

measurement
▪ Timer interrupt, OS signal, or HWC overflow

▪ Service routine examines return-address stack

▪ Addresses are mapped to routines using symbol table

information

▪ Statistical inference of program behavior
▪ Not very detailed information on highly volatile metrics

▪ Requires long-running applications

▪Works with unmodified executables

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 10

Time

main foo(0) foo(1) foo(2) int main()
{

int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Measurement

t
9

t
7

t
6

t
5

t
4

t
1

t
2

t
3

t
8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumentation

▪Measurement code is inserted such that every event

of interest is captured directly
▪ Can be done in various ways

▪ Advantage:
▪ Much more detailed information

▪ Disadvantage:
▪ Processing of source-code / executable

necessary

▪ Large relative overheads for small functions

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 11

Time

Measurement int main()
{

int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10 t

11
t
12

t
13

t
14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Critical issues

■ Accuracy
■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance

■ Perturbation
■ Measurement alters program behaviour

■ E.g., memory access pattern

■ Accuracy of timers & counters

■ Granularity
■ How many measurements?

■ How much information / processing during each measurement?

 Tradeoff: Accuracy vs. Expressiveness of data

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling

■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization

■ Tracing

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 13

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Profiling / Runtime summarization

■ Recording of aggregated information
■ Total, maximum, minimum, …

■ For measurements
■ Time

■ Counts
■ Function calls

■ Bytes transferred

■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …

■ Processes, threads

 Profile = summarization of events over execution interval

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 14

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Types of profiles

■ Flat profile
■ Shows distribution of metrics per routine / instrumented region

■ Calling context is not taken into account

■ Call-path profile
■ Shows distribution of metrics per executed call path

■ Sometimes only distinguished by partial calling context

(e.g., two levels)

■ Special-purpose profiles
■ Focus on specific aspects, e.g., MPI calls or OpenMP constructs

■ Comparing processes/threads

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 15

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing

■ Recording detailed information about significant points (events) during execution of

the program
■ Enter / leave of a region (function, loop, …)

■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type

■ Plus event-specific information (e.g., communicator,

sender / receiver, …)

■ Abstract execution model on level of defined events

 Event trace = Chronologically ordered sequence of

event records

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 16

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing Pros & Cons

■ Tracing advantages

■ Event traces preserve the temporal and spatial relationships among individual events

( context)

■ Allows reconstruction of dynamic application behaviour on any required level of abstraction

■ Most general measurement technique
■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large

■ Writing events to file at runtime may causes perturbation

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 17

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Typical performance analysis procedure

■ Do I have a performance problem at all?
■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?
■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?
■ Call-path profiling, detailed basic block profiling

■ Why is it there?
■ Hardware counter analysis, trace selected parts to keep trace size manageable

■ Does the code have scalability problems?
■ Load imbalance analysis, compare profiles at various sizes function-by-function

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 18

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P functionality

▪ Provide typical functionality for HPC performance tools

▪ Support all fundamental concepts of partner’s tools

▪ Instrumentation (various methods)

▪ Flexible measurement without re-compilation:
▪ Basic and advanced profile generation

▪ Event trace recording

▪ Online access to profiling data

▪MPI/SHMEM, OpenMP/Pthreads, and hybrid parallelism (and serial)

▪ Enhanced functionality (CUDA, OpenCL, OpenACC, highly scalable I/O)

1925TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

NPB-MZ-MPI / BT instrumentation

▪ Edit config/make.def to

adjust build configuration
▪ Modify specification of

compiler/linker: MPIF77

20

#---

The Fortran compiler used for MPI programs

#---

MPIF77 = mpif77

Alternative variants to perform instrumentation

...

MPIF77 = scorep -–user mpif77

...

#MPIF77 = $(PREP) mpif77

This links MPI Fortran programs; usually the same as ${MPIF77}

FLINK = $(MPIF77)

...
Uncomment the compiler

wrapper specification

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

NPB-MZ-MPI / BT instrumented build

▪ Return to root directory

and clean-up

▪ Re-build executable using

Score-P compiler wrapper

21

% make clean

% make bt-mz CLASS=C NPROCS=8

cd BT-MZ; make CLASS=C NPROCS=8 VERSION=

make: Entering directory 'BT-MZ'

cd ../sys; cc -o setparams setparams.c -lm

../sys/setparams bt-mz 8 B

scorep --user mpif77 -c -O3 -fopenmp bt.f

[...]

cd ../common; scorep --user mpif77 -c -O3 -qopenmp timers.f

scorep --user mpif77 –O3 -qopenmp -o ../bin.scorep/bt-mz_C.8 \

bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \

adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \

solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \

../common/print_results.o ../common/timers.o

Built executable ../bin.scorep/bt-mz_C.8

make: Leaving directory 'BT-MZ‘

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Summary measurement collection

▪ Change to the directory

containing the new

executable before running

it with the desired

configuration

▪ Check settings

▪ Submit job

22

% cd bin.scorep

% cp ../jobscript/claix/scorep.lsf .

% vi scorep.lsf

[...]

export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum

[...]

% bsub < scorep.lsf

Leave other lines

commented out

for the moment

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Summary measurement collection

▪ Check the output of the

application run

23

% less mzmpibt_scorep.<job_id>

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP \

>Benchmark

Number of zones: 16 x 16

Iterations: 200 dt: 0.000100

Number of active processes: 8

Use the default load factors with threads

Total number of threads: 48 (6.0 threads/process)

Calculated speedup = 47.97

Time step 1

[... More application output ...]

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report examination

▪ Creates experiment

directory including
▪ A record of the measurement

configuration (scorep.cfg)

▪ The analysis report that was

collated after measurement

(profile.cubex)

▪ Interactive exploration

with Cube

24

% ls

bt-mz_C.8 mzmpibt-<job_id>.out scorep_bt-mz_sum

% ls scorep_bt-mz_sum

profile.cubex scorep.cfg

% module load cube/4.3.4-gnu

% cube scorep_bt-mz_sum/profile.cubex

[CUBE GUI showing summary analysis report]

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Congratulations!?

▪ If you made it this far, you successfully used Score-P to
▪ instrument the application

▪ analyze its execution with a summary measurement, and

▪ examine it with one the interactive analysis report explorer GUIs

▪ ... revealing the call-path profile annotated with
▪ the “Time” metric

▪ Visit counts

▪ MPI message statistics (bytes sent/received)

▪ ... but how good was the measurement?
▪ The measured execution produced the desired valid result

▪ however, the execution took rather longer than expected!
▪ even when ignoring measurement start-up/completion, therefore

▪ it was probably dilated by instrumentation/measurement overhead

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis result scoring

▪ Report scoring as textual

output

▪ Region/callpath classification

▪ MPI pure MPI functions

▪ OMP pure OpenMP regions

▪ USR user-level computation

▪ COM “combined” USR+OpenMP/MPI

▪ ANY/ALL aggregate of all region

types

% scorep-score scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 160 GB

Estimated requirements for largest trace buffer (max_buf): 21 GB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 21 GB

(warning: The memory requirements cannot be satisfied by Score-P to avoid

intermediate flushes when tracing. Set SCOREP_TOTAL_MEMORY=4G to get the

maximum supported memory or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

ALL 21,476,892,880 6,583,834,153 2537.82 100.0 0.39 ALL

USR 21,431,996,118 6,574,793,529 1222.38 48.2 0.19 USR

OMP 42,257,056 8,283,136 1270.45 50.1 153.38 OMP

COM 2,351,570 723,560 2.99 0.1 4.13 COM

MPI 288,136 33,928 42.00 1.7 1237.91 MPI

160 GB total memory

21 GB per rank!

USR

USR

COM

COM USR

OMP MPI

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report breakdown

▪ Score report breakdown by region% scorep-score -r scorep_bt-mz_sum/profile.cubex

[...]

[...]

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

ALL 21,476,892,880 6,583,834,153 2537.82 100.0 0.39 ALL

USR 21,431,996,118 6,574,793,529 1222.38 48.2 0.19 USR

OMP 42,257,056 8,283,136 1270.45 50.1 153.38 OMP

COM 2,351,570 723,560 2.99 0.1 4.13 COM

MPI 288,136 33,928 42.00 1.7 1237.91 MPI

USR 6,883,222,086 2,110,313,472 513.22 20.2 0.24 binvcrhs_

USR 6,883,222,086 2,110,313,472 381.01 15.0 0.18 matmul_sub_

USR 6,883,222,086 2,110,313,472 284.34 11.2 0.13 matvec_sub_

USR 293,617,584 87,475,200 20.34 0.8 0.23 lhsinit_

USR 293,617,584 87,475,200 14.82 0.6 0.17 binvrhs_

USR 224,028,792 68,892,672 8.64 0.3 0.13 exact_solution_

USR

USR

COM

COM USR

OMP MPI

More than

20 GB just for these 6

regions

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis score

▪ Summary measurement analysis score reveals

▪ Total size of event trace would be ~160 GB

▪ Maximum trace buffer size would be ~21 GB per rank

▪ smaller buffer would require flushes to disk during measurement resulting in substantial perturbation

▪ 99.9% of the trace requirements are for USR regions

▪ purely computational routines never found on COM call-paths common to communication routines or OpenMP parallel

regions

▪ These USR regions contribute around 39% of total time

▪ however, much of that is very likely to be measurement overhead for frequently-executed small routines

▪ Advisable to tune measurement configuration

▪ Specify an adequate trace buffer size

▪ Specify a filter file listing (USR) regions not to be measured

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

▪ Report scoring with

prospective filter listing 6

USR regions

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

EXCLUDE

binvcrhs*

matmul_sub*

matvec_sub*

exact_solution*

binvrhs*

lhs*init*

timer_*

SCOREP_REGION_NAMES_END

% scorep-score -f ../config/scorep.filt \

scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 343MB

Estimated requirements for largest trace buffer (max_buf): 43MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 49MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=215MB to avoid intermediate flushes

or reduce requirements using USR regions filters.)

343 MB of memory in total,

43 MB per rank!

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

% scorep-score -r –f ../config/scorep.filt \

scorep_bt-mz_sum/profile.cubex

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

- ALL 21,476,892,880 6,583,834,153 2537.82 100.0 0.39 ALL

- USR 21,431,996,118 6,574,793,529 1222.38 48.2 0.19 USR

- OMP 42,257,056 8,283,136 1270.45 50.1 153.38 OMP

- COM 2,351,570 723,560 2.99 0.1 4.13 COM

- MPI 288,136 33,928 42.00 1.7 1237.91 MPI

* ALL 44,928,768 9,050,465 1315.44 51.8 145.35 ALL-FLT

+ FLT 21,431,964,112 6,574,783,688 1222.37 48.2 0.19 FLT

- OMP 42,257,056 8,283,136 1270.45 50.1 153.38 OMP-FLT

* COM 2,351,570 723,560 2.99 0.1 4.13 COM-FLT

- MPI 288,136 33,928 42.00 1.7 1237.91 MPI-FLT

* USR 32,006 9,841 0.00 0.0 0.31 USR-FLT

+ USR 6,883,222,086 2,110,313,472 513.22 20.2 0.24 binvcrhs_

+ USR 6,883,222,086 2,110,313,472 381.01 15.0 0.18 matmul_sub_

+ USR 6,883,222,086 2,110,313,472 284.34 11.2 0.13 matvec_sub_

+ USR 293,617,584 87,475,200 20.34 0.8 0.23 lhsinit_

+ USR 293,617,584 87,475,200 14.82 0.6 0.17 binvrhs_

+ USR 224,028,792 68,892,672 8.64 0.3 0.13 exact_solution_

- OMP 3,357,504 308,736 0.09 0.0 0.31 !$omp parallel @exch_qbc.f:244

Filtered
routines

marked with
‘+’

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ filtered summary measurement

▪ Set new experiment

directory and re-run

measurement with new

filter configuration

▪ Submit job

% vi scorep.lsf

[…]

export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum_filter

export SCOREP_FILTERING_FILE=../config/scorep.filt

[…]

% bsub < scorep.lsf

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Analysis report examination with Cube

Marc-André Hermanns

Jülich Supercomputing Centre

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cube (Performance Report Browser & Tools)

▪ Parallel program analysis report exploration tools
▪ Libraries for XML+binary report reading & writing

▪ Algebra utilities for report processing

▪ GUI for interactive analysis exploration
▪ Requires Qt4 ≥4.6 or Qt 5

▪ Originally developed as part of the Scalasca toolset

▪ Now available as a separate component
▪ Can be installed independently of Score-P, e.g., on laptop or desktop

▪ Latest release: Cube 4.3.4 (April 2016)

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 33

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Call

path

P
ro

p
e

rt
y

Location

Analysis presentation and exploration

▪ Representation of values (severity matrix)

on three hierarchical axes
▪ Performance property (metric)

▪ Call path (program location)

▪ System location (process/thread)

▪ Three coupled tree browsers

▪ Cube displays severities
▪ As value: for precise comparison

▪ As color: for easy identification of hotspots

▪ Inclusive value when closed & exclusive value when expanded

▪ Customizable via display modes

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 34

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Inclusive Exclusive

int foo()

{

int a;

a = 1 + 1;

bar();

a = a + 1;

return a;

}

Inclusive vs. exclusive values

▪ Inclusive
▪ Information of all sub-elements aggregated into single value

▪ Exclusive
▪ Information cannot be subdivided further

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 35

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How is it

distributed across

the processes/threads?

What kind of

performance

metric?

Where is it in the

source code?

In what context?

Analysis presentation

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 36

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Automatic trace analysis with the

Scalasca Trace Tools

Brian Wylie

Jülich Supercomputing Centre

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Automatic trace analysis using Scalasca

▪ Idea
▪ Automatic search for patterns of inefficient behaviour

▪ Classification of behaviour & quantification of significance

▪ Identification of delays as root causes of inefficiencies

▪ Guaranteed to cover the entire event trace

▪ Quicker than manual/visual trace analysis

▪ Parallel replay analysis exploits available memory & processors to deliver scalability

38

Call

path

P
ro

p
e

rt
y

Location

Low-level

event trace

High-level

result
Analysis 

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

▪Waiting time caused by a blocking receive operation posted earlier than the

corresponding send

▪ Applies to blocking as well as non-blocking communication

time

lo
c
a
tio

n

MPI_Recv

MPI_Send

time

lo
c
a
tio

n MPI_Recv

MPI_Send

MPI_Irecv MPI_Wait

MPI_Send

time

lo
c
a
tio

n MPI_Recv MPI_Irecv

MPI_Isend

MPI_Wait

MPI_IsendMPI_Wait MPI_Wait

Example: “Late Sender” wait state

3925TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

S
c
o
re

-P Scalasca trace analysis

40

Scalasca workflow

Instr.

target

application

Measurement

library

HWC
Parallel wait-
state search

Wait-state
report

Local event
traces

Summary
report

Optimized measurement configuration

Instrumenter
compiler / linker

Instrumented
executable

Source
modules

R
e
p
o
rt

m

a
n
ip

u
la

ti
o
n

Which problem?
Where in the

program?
Which

process?

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Local setup (CLAIX)

▪ Load environment modules
▪ Required for each shell session

▪ Important:
▪ Some Scalasca commands have a run-time dependency on Score-P & CUBE

▪ Therefore also have those modules loaded when using Scalasca

▪ Scalasca may need the same MPI and compiler modules as applications instrumented with Score-P

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 41

% module load UNITE

% module load cube/4.3.4-gnu

% module load scorep/3.1-openmpi-intel-papi

% module load scalasca/2.3.1-openmpi-intel-papi

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

scalasca command – One command for (almost) everything

▪ The ‘scalasca -instrument’ command is deprecated and only provided for backwards

compatibility with Scalasca 1.x., recommended: use Score-P instrumenter directly

42

% scalasca
Scalasca 2.3.1
Toolset for scalable performance analysis of large-scale parallel applications
usage: scalasca [OPTION]... ACTION <argument>...

1. prepare application objects and executable for measurement:
scalasca -instrument <compile-or-link-command> # skin (using scorep)

2. run application under control of measurement system:
scalasca -analyze <application-launch-command> # scan

3. interactively explore measurement analysis report:
scalasca -examine <experiment-archive|report> # square

Options:
-c, --show-config show configuration summary and exit
-h, --help show this help and exit
-n, --dry-run show actions without taking them

--quickref show quick reference guide and exit
--remap-specfile show path to remapper specification file and exit

-v, --verbose enable verbose commentary
-V, --version show version information and exit

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Scalasca convenience command: scan / scalasca -analyze

▪ Scalasca measurement collection & analysis nexus

43

% scan
Scalasca 2.3.1: measurement collection & analysis nexus
usage: scan {options} [launchcmd [launchargs]] target [targetargs]

where {options} may include:
-h Help: show this brief usage message and exit.
-v Verbose: increase verbosity.
-n Preview: show command(s) to be launched but don't execute.
-q Quiescent: execution with neither summarization nor tracing.
-s Summary: enable runtime summarization. [Default]
-t Tracing: enable trace collection and analysis.
-a Analyze: skip measurement to (re-)analyze an existing trace.
-e exptdir : Experiment archive to generate and/or analyze.

(overrides default experiment archive title)
-f filtfile : File specifying measurement filter.
-l lockfile : File that blocks start of measurement.
-m metrics : Metric specification for measurement.

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Scalasca convenience command: square / scalasca -examine

▪ Scalasca analysis report explorer (Cube)

44

% square

Scalasca 2.3.1: analysis report explorer

usage: square [-v] [-s] [-f filtfile] [-F] <experiment archive | cube file>

-c <none | quick | full> : Level of sanity checks for newly created reports

-F : Force remapping of already existing reports

-f filtfile : Use specified filter file when doing scoring

-s : Skip display and output textual score report

-v : Enable verbose mode

-n : Do not include idle thread metric

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Automatic measurement configuration

▪scan configures Score-P measurement by automatically setting some environment

variables and exporting them
▪ E.g., experiment title, profiling/tracing mode, filter file, …

▪ Precedence order:
▪ Command-line arguments

▪ Environment variables already set

▪ Automatically determined values

▪ Also, scan includes consistency checks and prevents corrupting existing experiment

directories

▪ For tracing experiments, after trace collection completes then automatic parallel trace

analysis is initiated
▪ Uses identical launch configuration to that used for measurement (i.e., the same allocated compute

resources)

4525TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary measurement collection...

▪ Change to

directory with the

executable and

edit the job script

▪ Submit the job

46

% cd bin.scorep

% cp ../jobscript/claix/scalasca.lsf .

% vim scalasca.lsf

[...]

export SCOREP_FILTERING_FILE=scorep.filt

#export SCOREP_TOTAL_MEMORY=100M

#export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_TOT_CYC

Scalasca configuration

export SCAN_ANALYZE_OPTS=“--time-correct”

scalasca -analyze $MPIEXEC […] ./bt-mz_C.8

% bsub < scalasca.lsf

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report examination

▪ Score summary analysis report

▪ Post-processing and interactive exploration with Cube

▪ The post-processing derives additional metrics and generates a structured metric

hierarchy

47

% square scorep_bt-mz_C_8x6_sum

INFO: Displaying ./scorep_bt-mz_C_8x6_sum/summary.cubex...

[GUI showing summary analysis report]

% square -s scorep_bt-mz_C_8x6_sum

INFO: Post-processing runtime summarization result...

INFO: Score report written to ./scorep_bt-mz_C_8x6_sum/scorep.score

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Post-processed summary analysis report

48

Split base metrics into

more specific metrics

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ trace measurement collection...

▪ Change to directory

with the executable

and edit the job

script

▪ Add “-t” to the

scalasca -analyze

command

▪ Set/uncomment

SCOREP_TOTAL_MEMORY

when more than

16MB per process

▪ Submit the job

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 49

% cd bin.scorep

% cp ../jobscript/claix/scalasca.lsf .

% vim scalasca.lsf

[...]

export SCOREP_FILTERING_FILE=scorep.filt

export SCOREP_TOTAL_MEMORY=100M

#export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_TOT_CYC

Scalasca configuration

export SCAN_ANALYZE_OPTS=“--time-correct”

scalasca –analyze -t mpiexec –np 8 ./bt-mz_C.8

% bsub < scalasca.lsf

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ trace measurement ... analysis

▪ Continues with

automatic (parallel)

analysis of trace files

50

S=C=A=N: Fri Oct 21 10:06:16 2016: Analyze start
mpiexec –np 8 scout.hyb --time-correct \

./scorep_bt-mz_C_8x6_trace/traces.otf2

Analyzing experiment archive ./scorep_bt-mz_C_8x6_trace/traces.otf2

Opening experiment archive ... done (0.065s).
Reading definition data ... done (0.191s).
Reading event trace data ... done (0.839s).
Preprocessing ... done (0.287s).
Timestamp correction ... done (0.686s).
Analyzing trace data ... done (8.884s).
Writing analysis report ... done (0.219s).

Max. memory usage : 795.684MB

Total processing time: 11.444s
S=C=A=N: Fri Oct 21 10:06:28 2016: Analyze done (status=0) 12s

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

Timestamp correction is

appropriate when clocks

on compute nodes are not

kept synchronized

Memory required for trace

analysis typically several

times size of trace files

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ trace analysis report exploration

▪ Produces trace analysis report in the experiment directory containing trace-based

wait-state metrics

51

% square scorep_bt-mz_C_8x6_trace
INFO: Post-processing runtime summarization result...
INFO: Post-processing trace analysis report...
INFO: Displaying ./scorep_bt-mz_C_8x6_trace/trace.cubex...

[GUI showing trace analysis report]

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Post-processed trace analysis report

52

Additional trace-based

metrics in metric hierarchy

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Scalasca Trace Tools: Further information

▪ Collection of trace-based performance tools
▪ Specifically designed for large-scale systems

▪ Features an automatic trace analyzer providing wait-state, critical-path, and delay analysis

▪ Supports MPI, OpenMP, POSIX threads, and hybrid MPI+OpenMP/Pthreads

▪ Available under 3-clause BSD open-source license

▪ Documentation & sources:
▪ http://www.scalasca.org

▪ Contact:
▪ mailto: scalasca@fz-juelich.de

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 53

