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Stored Program Computer: Base setting

§ Improvements for relevant software
§ What are the technical opportunities?
§ Economical concerns
§ Marketing concerns

C
PU

Memory

Control
Unit

Arithmetic
Logical

Unit

Input Output Architect’s view:
Make the common case fast !

401d08:   f3 0f 58 04 82         addss xmm0,[rdx + rax * 4]
401d0d:   48 83 c0 01            add    rax,1
401d11:   39 c7                  cmp edi,eax
401d13:   77 f3                  ja     401d08

for (int j=0; j<size; j++){

sum = sum + V[j];
}

Strategies
§ Increase clock speed
§ Parallelism
§ Specialization

Execution and 
memory

Node-level Performance Engineering
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Performance increase by clock increase

Throughput:
1 Unit per 
second

Limit: Physical limitations for cooling!

Throughput:
4 Units per 
second
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Performance increase by parallelization

Throughput:
1 Unit per second

Problems
• Need enough parallel work
• No dependencies between work
• Usage mostly explicit

Throughput:
8 Unit per second
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Instruction level parallelism

Node-level Performance Engineering

Pipelining

Instructions

Stages

Superscalar execution

4-fach superskalar

I5 I4 I3 I2 I1

1 2 3 4 5Takt
12345

Throughput: 
1 instruction per cycle
Speedup by factor 5

Single instruction takes 5 cycles

Throughput: 
4 instructions per cycle
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Core details: Simultaneous multi-threading (SMT)
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Data parallel execution units (SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Scalar execution

Register widths
• 1  operand

• 2 operands (SSE)

• 4  operands (AVX)

• 8 operands (AVX512)

= +
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Data parallel execution units (SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Register widths
• 1  operand

• 2 operands (SSE)

• 4  operands (AVX)

• 8 operands (AVX512)

SIMD execution

= +
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§ Only part of application may be vectorized, arithmetic vs. 
load/store (Amdahls law), data transfers

§ Memory saturation often makes SIMD obsolete

Limits of SIMD processing

16cy
4cy
2cy
1cy

4cy 4cy
Per-cacheline
cycle counts

Cache MemoryExecution

diminishing 
returns (Amdahl)

16cy
4cy
2cy

Scalar
SSE
AVX
AVX512

Possible solution: 
Improve cache 
bandwidth
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Memory hierarchy

You can either build a
small und fast memory
or a
large and slow memory.

Purpose of many optimizations is therefore to load 
data mostly from fast memory layers.

Memory

L3 Cache

Disk

L2 Cache

L1 Cache10-9

10-8

10-7

10-4

Latency [s]

1012

1011

109

Bandwidth 
[bytes/s]

Core
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Data transfers in a memory hierarchy
§ How does data travel from memory to the CPU and back?
§ Example: Array copy A(:)=C(:)

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS
ST A(1)MISS

write
allocate

evict
(delayed)

3 CL 
transfers

LD C(2..Ncl)
ST A(2..Ncl) HIT

CPU registers

Cache

Memory

CL

CL

CLCL

LD C(1)

NTST A(1)
MISS

2 CL 
transfers

LD C(2..Ncl)
NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT) 
stores

50% 
performance 
boost for 
COPY

C(:) A(:) C(:) A(:)
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Technologies Driving Performance

ILP  Obstacle: Not more parallelism available

Clock    Obstacle: Power/Heat dissipation

Multi- Manycore Obstacle: Getting data to/from cores

SIMD  Obstacle: Power

Technology 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Clock
33 
MHz

200 
MHz

1.1 
GHz

2 
GHz

3.8 
GHz

3.2 
GHz

2.9 
GHz

2.7 
GHz

1.9 
GHz

1.7 
GHz

ILP
SMT SMT2 SMT4 SMT8
SIMD SSE SSE2 AVX AVX512

Multicore 2C 4C 8C 12C 15C 18C 22C 28C

Memory
3.2 
GB/s

6.4 
GB/s

12.8 
GB/s

25.6 
GB/s

42.7 
GB/s

60 
GB/s

128 
GB/s

Node-level Performance Engineering
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History of Intel chip performance

Trade cores for 
frequency96W

135W

145W
173W

Node-level Performance Engineering
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The real picture

SSE2

AVX

AVX512

FMA

Node-level Performance Engineering
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Finding the right compromise

# cores SIMD

Core 
complexity

Frequency

Nvidia
GP100

Intel 
Skylake-EP

Intel KNL

Area is total power budget!

Turbo: Change weights within 
the same architecture!

Node-level Performance Engineering
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Intel IvyBridge-EP
Number of cores ncore 12
FP instructions per cycle F 2
FP ops per instructions S 4 (DP) / 8 (SP)
Clock speed [GHz] n 2.7
Performance [GF/s]  P 259 (DP) / 518 (SP)

The driving forces behind performance 2012

P = ncore * F * S * n

But: P=5.4 GF/s for serial, non-SIMD code 

TOP500 rank 1 (1996)

Intel IvyBridge-EP

Node-level Performance Engineering
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Intel IvyBridge-EP
Number of cores ncore 28
FP instructions per cycle F 2
FMA factor M 2
FP ops per instructions S 8 (DP) / 16 (SP)
Clock speed [GHz] n 2.3 (scalar 2.8)
Performance [GF/s]  P 2060 (DP) / 4122 (SP)

The driving forces behind performance 2018

P = ncore * F * M * S * n

But: P=5.6 GF/s for serial, non-SIMD code 

Intel Skylake-SP

Node-level Performance Engineering



PATTERN BASED PERFORMANCE 
ENGINEERING

Best Practices
Basic PE Process
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Basics of optimization

1. Define relevant test cases
2. Establish a sensible performance metric
3. Acquire a runtime profile (sequential)
4. Identify hot kernels (Hopefully there are any!)
5. Carry out optimization process for each kernel

Motivation:
• Understand observed performance
• Learn about code characteristics and machine capabilities
• Develop a well founded performance expectation
• Deliberately decide on optimizations

Iteratively

Node-level Performance Engineering
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Best practices for benchmarking

§ Preparation
§ Reliable timing (minimum time which can be measured?)
§ Document code generation (flags, compiler version)
§ Get access to an exclusive system
§ System state (clock speed, turbo mode, memory, caches)
§ Consider to automate runs with a script (shell, python, perl)

§ Doing
§ Affinity control
§ Check: Is the result reasonable?
§ Is result deterministic and reproducible?
§ Statistics: Mean, Best ?
§ Basic variants: Thread count, affinity, working set size

Node-level Performance Engineering
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Performance Engineering Tasks: Software

Implementation

Instruction code

Algorithm
1 Reduce algorithmic work

2 Minimize processor work

Optimizing software for a specific hardware requires to align 
several orthogonal.

On the software side it is mostly about reducing algorithmic and 
processor work. Still decisions here may also restrict the options on 
the hardware side.

Unit of work 
for processor
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Performance Engineering Tasks: Hardware

core

L1

L2

L3

SIMD
FMA

Memory

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

Memory

3 Distribute work and data for optimal 
utilization of parallel resources

5 Use most effective 
execution units on chip

4 Avoid bottlenecks

Parallelism: Horizontal dimension

D
at

a 
pa

th
s:

 V
er

tic
al

 d
im

en
si

on



23

Thinking in bottlenecks

• A bottleneck is a performance limiting setting
• Microarchitectures expose numerous bottlenecks

Observation 1:
Most applications face a single bottleneck at a time!

Observation 2:
There is a limited number of relevant bottlenecks!

Node-level Performance Engineering
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Performance Engineering Process: 
Analysis

Node-level Performance Engineering

Step 1 Analysis: Understanding observed performance

Pattern

MicrobenchmarkingHardware/Instruction 
set architecture

Algorithm/Code 
Analysis

Application 
Benchmarking

Performance 
patterns are 

typical 
performance 
limiting motifs 

The set of input data indicating 
a pattern is its signature
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Performance Engineering Process: 
Modeling

Node-level Performance Engineering

Step 2 Formulate Model: Validate pattern and get quantitative insight

May be skipped !
Pattern

Performance Model

Qualitative view

Quantitative view

Validation Traces/HW metrics

W
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Performance Engineering Process: 
Optimization

Node-level Performance Engineering

Optimize for better 
resource utilization

Eliminate non-
expedient activity

Pattern

Performance Model

Performance 
improves until next 

bottleneck is hit

Improves 
Performance

Step 3 Optimization: Improve utilization of available resources
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Performance pattern classification

1. Maximum resource utilization
(computing at a bottleneck)

2. Optimal use of parallel resources

3. Hazards
(something “goes wrong”)

4. Use of most effective instructions

5. Work related 
(too much work or too inefficiently done)

Node-level Performance Engineering
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Patterns (I): Bottlenecks & parallelism

Pattern Performance behavior Metric signature, LIKWID
performance group(s)

Bandwidth saturation Saturating speedup across 
cores sharing a data path

Bandwidth meets BW of suitable 
streaming benchmark (MEM, L3)

ALU saturation Throughput at design limit(s)
Good (low) CPI, integral ratio of 
cycles to specific instruction 
count(s) (FLOPS_*, DATA, CPI)

Bad ccNUMA page placement
Bad or no scaling across NUMA 
domains, performance improves 
with interleaved page placement

Unbalanced bandwidth on 
memory interfaces / High remote 
traffic (MEM)

Load imbalance / serial
fraction Saturating/sub-linear speedup

Different amount of “work” on the 
cores (FLOPS_*); note that 
instruction count is not reliable!

Node-level Performance Engineering
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Patterns (II): Hazards

Pattern Performance behavior Metric signature, LIKWID
performance group(s)

False sharing of cache
lines

Large discrepancy from 
performance model in parallel case, 
bad scalability

Frequent (remote) CL evicts 
(CACHE)

Pipelining issues
In-core throughput far from design 
limit, performance insensitive to 
data set size

(Large) integral ratio of cycles to 
specific instruction count(s), bad 
(high) CPI (FLOPS_*, DATA, CPI)

Control flow issues See above High branch rate and branch miss 
ratio (BRANCH)

Micro-architectural
anomalies

Large discrepancy from simple 
performance model based on 
LD/ST and arithmetic throughput

Relevant events are very 
hardware-specific, e.g., memory 
aliasing stalls, conflict misses, 
unaligned LD/ST, requeue events

Latency-bound data 
access

Simple bandwidth performance 
model much too optimistic

Low BW utilization / Low cache hit 
ratio, frequent CL evicts or 
replacements (CACHE, DATA, 
MEM)

Node-level Performance Engineering
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Patterns (III): Work-related

Pattern Performance behavior Metric signature, LIKWID 
performance group(s)

Synchronization overhead
Speedup going down as more cores 
are added / No speedup with small 
problem sizes / Cores busy but low 
FP performance

Large non-FP instruction count 
(growing with number of cores 
used) / Low CPI (FLOPS_*, CPI)

Instruction overhead
Low application performance, good 
scaling across cores, performance 
insensitive to problem size

Low CPI near theoretical limit / 
Large non-FP instruction count 
(constant vs. number of cores) 
(FLOPS_*, DATA, CPI)

Excess data volume Simple bandwidth performance 
model much too optimistic

Low BW utilization / Low cache hit 
ratio, frequent CL evicts or 
replacements (CACHE, DATA, 
MEM)

Code 
composition

Expensive 
instructions

Similar to instruction overhead

Many cycles per instruction (CPI) 
if the problem is large-latency 
arithmetic

Ineffective 
instructions

Scalar instructions dominating in 
data-parallel loops (FLOPS_*, 
CPI)

Node-level Performance Engineering
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Patterns conclusion
§ Pattern signature = performance behavior + hardware metrics 

§ Hardware metrics alone are almost useless without a pattern 

§ Patterns are applied hotspot (loop) by hotspot

§ Patterns map to typical execution bottlenecks

§ Patterns are extremely helpful in classifying performance issues
§ The first pattern is always a hypothesis
§ Validation by tanking data (more performance behavior, HW metrics)
§ Refinement or change of pattern

§ Performance models are crucial for most patterns
§ Model follows from pattern

Node-level Performance Engineering
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