
ERLANGEN REGIONAL
COMPUTING CENTER

J. Eitzinger

PPCES 2018, 15.3.2018

ProPE: Node Level Performance
Engineering and Performance
Patterns

2

Stored Program Computer: Base setting

§ Improvements for relevant software
§ What are the technical opportunities?
§ Economical concerns
§ Marketing concerns

C
PU

Memory

Control
Unit

Arithmetic
Logical

Unit

Input Output Architect’s view:
Make the common case fast !

401d08: f3 0f 58 04 82 addss xmm0,[rdx + rax * 4]
401d0d: 48 83 c0 01 add rax,1
401d11: 39 c7 cmp edi,eax
401d13: 77 f3 ja 401d08

for (int j=0; j<size; j++){

sum = sum + V[j];
}

Strategies
§ Increase clock speed
§ Parallelism
§ Specialization

Execution and
memory

Node-level Performance Engineering

3

Performance increase by clock increase

Throughput:
1 Unit per
second

Limit: Physical limitations for cooling!

Throughput:
4 Units per
second

4

Performance increase by parallelization

Throughput:
1 Unit per second

Problems
• Need enough parallel work
• No dependencies between work
• Usage mostly explicit

Throughput:
8 Unit per second

5

Instruction level parallelism

Node-level Performance Engineering

Pipelining

Instructions

Stages

Superscalar execution

4-fach superskalar

I5 I4 I3 I2 I1

1 2 3 4 5Takt
12345

Throughput:
1 instruction per cycle
Speedup by factor 5

Single instruction takes 5 cycles

Throughput:
4 instructions per cycle

6

Core details: Simultaneous multi-threading (SMT)
St

an
da

rd
 c

or
e

2-
w

ay
 S

M
T

7

Data parallel execution units (SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Scalar execution

Register widths
• 1 operand

• 2 operands (SSE)

• 4 operands (AVX)

• 8 operands (AVX512)

= +

8

Data parallel execution units (SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Register widths
• 1 operand

• 2 operands (SSE)

• 4 operands (AVX)

• 8 operands (AVX512)

SIMD execution

= +

9

§ Only part of application may be vectorized, arithmetic vs.
load/store (Amdahls law), data transfers

§ Memory saturation often makes SIMD obsolete

Limits of SIMD processing

16cy
4cy
2cy
1cy

4cy 4cy
Per-cacheline
cycle counts

Cache MemoryExecution

diminishing
returns (Amdahl)

16cy
4cy
2cy

Scalar
SSE
AVX
AVX512

Possible solution:
Improve cache
bandwidth

10

Memory hierarchy

You can either build a
small und fast memory
or a
large and slow memory.

Purpose of many optimizations is therefore to load
data mostly from fast memory layers.

Memory

L3 Cache

Disk

L2 Cache

L1 Cache10-9

10-8

10-7

10-4

Latency [s]

1012

1011

109

Bandwidth
[bytes/s]

Core

11

Data transfers in a memory hierarchy
§ How does data travel from memory to the CPU and back?
§ Example: Array copy A(:)=C(:)

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS
ST A(1)MISS

write
allocate

evict
(delayed)

3 CL
transfers

LD C(2..Ncl)
ST A(2..Ncl) HIT

CPU registers

Cache

Memory

CL

CL

CLCL

LD C(1)

NTST A(1)
MISS

2 CL
transfers

LD C(2..Ncl)
NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT)
stores

50%
performance
boost for
COPY

C(:) A(:) C(:) A(:)

12

Technologies Driving Performance

ILP Obstacle: Not more parallelism available

Clock Obstacle: Power/Heat dissipation

Multi- Manycore Obstacle: Getting data to/from cores

SIMD Obstacle: Power

Technology 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Clock
33
MHz

200
MHz

1.1
GHz

2
GHz

3.8
GHz

3.2
GHz

2.9
GHz

2.7
GHz

1.9
GHz

1.7
GHz

ILP
SMT SMT2 SMT4 SMT8
SIMD SSE SSE2 AVX AVX512

Multicore 2C 4C 8C 12C 15C 18C 22C 28C

Memory
3.2
GB/s

6.4
GB/s

12.8
GB/s

25.6
GB/s

42.7
GB/s

60
GB/s

128
GB/s

Node-level Performance Engineering

13

History of Intel chip performance

Trade cores for
frequency96W

135W

145W
173W

Node-level Performance Engineering

14

The real picture

SSE2

AVX

AVX512

FMA

Node-level Performance Engineering

15

Finding the right compromise

cores SIMD

Core
complexity

Frequency

Nvidia
GP100

Intel
Skylake-EP

Intel KNL

Area is total power budget!

Turbo: Change weights within
the same architecture!

Node-level Performance Engineering

16

Intel IvyBridge-EP
Number of cores ncore 12
FP instructions per cycle F 2
FP ops per instructions S 4 (DP) / 8 (SP)
Clock speed [GHz] n 2.7
Performance [GF/s] P 259 (DP) / 518 (SP)

The driving forces behind performance 2012

P = ncore * F * S * n

But: P=5.4 GF/s for serial, non-SIMD code

TOP500 rank 1 (1996)

Intel IvyBridge-EP

Node-level Performance Engineering

17

Intel IvyBridge-EP
Number of cores ncore 28
FP instructions per cycle F 2
FMA factor M 2
FP ops per instructions S 8 (DP) / 16 (SP)
Clock speed [GHz] n 2.3 (scalar 2.8)
Performance [GF/s] P 2060 (DP) / 4122 (SP)

The driving forces behind performance 2018

P = ncore * F * M * S * n

But: P=5.6 GF/s for serial, non-SIMD code

Intel Skylake-SP

Node-level Performance Engineering

PATTERN BASED PERFORMANCE
ENGINEERING

Best Practices
Basic PE Process

19

Basics of optimization

1. Define relevant test cases
2. Establish a sensible performance metric
3. Acquire a runtime profile (sequential)
4. Identify hot kernels (Hopefully there are any!)
5. Carry out optimization process for each kernel

Motivation:
• Understand observed performance
• Learn about code characteristics and machine capabilities
• Develop a well founded performance expectation
• Deliberately decide on optimizations

Iteratively

Node-level Performance Engineering

20

Best practices for benchmarking

§ Preparation
§ Reliable timing (minimum time which can be measured?)
§ Document code generation (flags, compiler version)
§ Get access to an exclusive system
§ System state (clock speed, turbo mode, memory, caches)
§ Consider to automate runs with a script (shell, python, perl)

§ Doing
§ Affinity control
§ Check: Is the result reasonable?
§ Is result deterministic and reproducible?
§ Statistics: Mean, Best ?
§ Basic variants: Thread count, affinity, working set size

Node-level Performance Engineering

21Node-level Performance Engineering

Performance Engineering Tasks: Software

Implementation

Instruction code

Algorithm
1 Reduce algorithmic work

2 Minimize processor work

Optimizing software for a specific hardware requires to align
several orthogonal.

On the software side it is mostly about reducing algorithmic and
processor work. Still decisions here may also restrict the options on
the hardware side.

Unit of work
for processor

22Node-level Performance Engineering

Performance Engineering Tasks: Hardware

core

L1

L2

L3

SIMD
FMA

Memory

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

Memory

3 Distribute work and data for optimal
utilization of parallel resources

5 Use most effective
execution units on chip

4 Avoid bottlenecks

Parallelism: Horizontal dimension

D
at

a
pa

th
s:

 V
er

tic
al

 d
im

en
si

on

23

Thinking in bottlenecks

• A bottleneck is a performance limiting setting
• Microarchitectures expose numerous bottlenecks

Observation 1:
Most applications face a single bottleneck at a time!

Observation 2:
There is a limited number of relevant bottlenecks!

Node-level Performance Engineering

24

Performance Engineering Process:
Analysis

Node-level Performance Engineering

Step 1 Analysis: Understanding observed performance

Pattern

MicrobenchmarkingHardware/Instruction
set architecture

Algorithm/Code
Analysis

Application
Benchmarking

Performance
patterns are

typical
performance
limiting motifs

The set of input data indicating
a pattern is its signature

25

Performance Engineering Process:
Modeling

Node-level Performance Engineering

Step 2 Formulate Model: Validate pattern and get quantitative insight

May be skipped !
Pattern

Performance Model

Qualitative view

Quantitative view

Validation Traces/HW metrics

W
ro

ng
 p

at
te

rn

26

Performance Engineering Process:
Optimization

Node-level Performance Engineering

Optimize for better
resource utilization

Eliminate non-
expedient activity

Pattern

Performance Model

Performance
improves until next

bottleneck is hit

Improves
Performance

Step 3 Optimization: Improve utilization of available resources

27

Performance pattern classification

1. Maximum resource utilization
(computing at a bottleneck)

2. Optimal use of parallel resources

3. Hazards
(something “goes wrong”)

4. Use of most effective instructions

5. Work related
(too much work or too inefficiently done)

Node-level Performance Engineering

28

Patterns (I): Bottlenecks & parallelism

Pattern Performance behavior Metric signature, LIKWID
performance group(s)

Bandwidth saturation Saturating speedup across
cores sharing a data path

Bandwidth meets BW of suitable
streaming benchmark (MEM, L3)

ALU saturation Throughput at design limit(s)
Good (low) CPI, integral ratio of
cycles to specific instruction
count(s) (FLOPS_*, DATA, CPI)

Bad ccNUMA page placement
Bad or no scaling across NUMA
domains, performance improves
with interleaved page placement

Unbalanced bandwidth on
memory interfaces / High remote
traffic (MEM)

Load imbalance / serial
fraction Saturating/sub-linear speedup

Different amount of “work” on the
cores (FLOPS_*); note that
instruction count is not reliable!

Node-level Performance Engineering

29

Patterns (II): Hazards

Pattern Performance behavior Metric signature, LIKWID
performance group(s)

False sharing of cache
lines

Large discrepancy from
performance model in parallel case,
bad scalability

Frequent (remote) CL evicts
(CACHE)

Pipelining issues
In-core throughput far from design
limit, performance insensitive to
data set size

(Large) integral ratio of cycles to
specific instruction count(s), bad
(high) CPI (FLOPS_*, DATA, CPI)

Control flow issues See above High branch rate and branch miss
ratio (BRANCH)

Micro-architectural
anomalies

Large discrepancy from simple
performance model based on
LD/ST and arithmetic throughput

Relevant events are very
hardware-specific, e.g., memory
aliasing stalls, conflict misses,
unaligned LD/ST, requeue events

Latency-bound data
access

Simple bandwidth performance
model much too optimistic

Low BW utilization / Low cache hit
ratio, frequent CL evicts or
replacements (CACHE, DATA,
MEM)

Node-level Performance Engineering

30

Patterns (III): Work-related

Pattern Performance behavior Metric signature, LIKWID
performance group(s)

Synchronization overhead
Speedup going down as more cores
are added / No speedup with small
problem sizes / Cores busy but low
FP performance

Large non-FP instruction count
(growing with number of cores
used) / Low CPI (FLOPS_*, CPI)

Instruction overhead
Low application performance, good
scaling across cores, performance
insensitive to problem size

Low CPI near theoretical limit /
Large non-FP instruction count
(constant vs. number of cores)
(FLOPS_*, DATA, CPI)

Excess data volume Simple bandwidth performance
model much too optimistic

Low BW utilization / Low cache hit
ratio, frequent CL evicts or
replacements (CACHE, DATA,
MEM)

Code
composition

Expensive
instructions

Similar to instruction overhead

Many cycles per instruction (CPI)
if the problem is large-latency
arithmetic

Ineffective
instructions

Scalar instructions dominating in
data-parallel loops (FLOPS_*,
CPI)

Node-level Performance Engineering

31

Patterns conclusion
§ Pattern signature = performance behavior + hardware metrics

§ Hardware metrics alone are almost useless without a pattern

§ Patterns are applied hotspot (loop) by hotspot

§ Patterns map to typical execution bottlenecks

§ Patterns are extremely helpful in classifying performance issues
§ The first pattern is always a hypothesis
§ Validation by tanking data (more performance behavior, HW metrics)
§ Refinement or change of pattern

§ Performance models are crucial for most patterns
§ Model follows from pattern

Node-level Performance Engineering

32

References
Book:
§ G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and Engineers. CRC

Computational Science Series, 2010. ISBN 978-1439811924
http://www.hpc.rrze.uni-erlangen.de/HPC4SE/

Papers:
§ J. Hammer, G. Hager, J. Eitzinger, and G. Wellein: Automatic Loop Kernel Analysis and Performance

Modeling With Kerncraft. Proc. PMBS15, the 6th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems, in conjunction with ACM/IEEE
Supercomputing 2015 (SC15), November 16, 2015, Austin, TX. DOI: 10.1145/2832087.2832092,
Preprint: arXiv:1509.03778

§ M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Wellein: Chip-level and multi-node analysis of
energy-optimized lattice-Boltzmann CFD simulations. Concurrency and Computation: Practice and
Experience (2015). DOI: 10.1002/cpe.3489 Preprint: arXiv:1304.7664

§ H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of stencil
computations using the Execution-Cache-Memory model. Proc. ICS15,
DOI: 10.1145/2751205.2751240, Preprint: arXiv:1410.5010

§ G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power properties of modern
multicore chips via simple machine models. Computation and Concurrency: Practice and Experience
(2013). DOI: 10.1002/cpe.3180, Preprint: arXiv:1208.2908

Node-level Performance Engineering

http://www.crcpress.com/product/isbn/9781439811924
http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
http://www.dcs.warwick.ac.uk/pmbs/pmbs15/PMBS15/Welcome.html
http://sc15.supercomputing.org/
http://dx.doi.org/10.1145/2832087.2832092
http://arxiv.org/abs/1509.03778
http://dx.doi.org/10.1002/cpe.3489
http://arxiv.org/abs/1304.7664
http://www.cs.ucr.edu/~ics15/
http://dx.doi.org/10.1145/2751205.2751240
http://arxiv.org/abs/1410.5010
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

33

References

Papers continued:

§ J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on modern multicore
processors: Best practices for performance engineering. Workshop on Productivity and Performance
(PROPER 2012) at Euro-Par 2012, August 28, 2012, Rhodes Island, Greece. DOI: 10.1007/978-3-642-
36949-0_50. Preprint: arXiv:1206.3738

§ J. Treibig, G. Hager, H. Hofmann, J. Hornegger and G. Wellein: Pushing the limits for medical image
reconstruction on recent standard multicore processors. International Journal of High Performance
Computing Applications, (published online before print).
DOI: 10.1177/1094342012442424

§ J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool suite for x86
multicore environments. Proc. PSTI2010, the First International Workshop on Parallel Software Tools
and Tool Infrastructures, San Diego CA, September 13, 2010. DOI: 10.1109/ICPPW.2010.38. Preprint:
arXiv:1004.4431

§ J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for iterative
stencil computations. Journal of Computational Science 2 (2), 130-137 (2011). DOI
10.1016/j.jocs.2011.01.010

§ J. Treibig, G. Hager and G. Wellein: Multicore architectures: Complexities of performance prediction
for Bandwidth-Limited Loop Kernels on Multi-Core Architectures.
DOI: 10.1007/978-3-642-13872-0_1, Preprint: arXiv:0910.4865.

Node-level Performance Engineering

http://dx.doi.org/10.1007/978-3-642-36949-0_50
http://arxiv.org/abs/1206.3738
http://dx.doi.org/10.1177/1094342012442424
http://www.psti-workshop.org/
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
http://arxiv.org/abs/1004.4431
http://dx.doi.org/10.1016/j.jocs.2011.01.010
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://arxiv.org/abs/0910.4865

