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Motivation

• Increasing concurrency in HPC needs new concepts of programming

• MPI + X is one candidate
 Highlights the need for multilevel parallelism

 Potentially even more levels of parallelism

• Multiple PGAS approaches were developed
 Did any of these gain acceptance?

 Why?

Key to success might be tool support



Building Correctness Analysis on Top of XMPT

Joachim Protze

3

Portable runtime correctness checking

• Can we reuse existing tools and apply them to new programming

paradigms?

• What are the common challenges?

• What are the limitations?

• How big is the effort to integrate analysis for pragma-based PGAS 

approach XMP into existing MPI tool MUST?

• Data race and deadlock are major threats in parallel
 Can we define an abstract interface, that provides sufficient information to

analyse arbitrary parallel paradigms?
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Agenda

• What is XMPT? And why do we want it?

• Experiences using XMPT
 Lessons to learn for tool interfaces

• Results of applying MUST to XMP applications
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Tools interfaces

• PMPI
 Tools interface for MPI

 MPI spec describes wrapping of MPI functions

• OMPT
 Tools interface for OpenMP

 Latest OpenMP spec describes events, tool gets notification about encountered 

events

• XMPT
 Tools interface for XMP, follows the specification of OMPT

 Development of XMPT started with OMPT @TR2 level
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XMPT

• What events are needed?
 Events for the begin and end of XMP regions

• What information is needed?
 Essentially, all information possibly provided to the XMP pragma

 To allow stateless implementation of the tool, the runtime stores a tool data with

scopes

 XMP already provided functions to derive information from handles

• Is this information sufficient for performance analysis?
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Example: Data race detection for XMP

XMPT (in MUST):

- Fork / join, barrier

- Async communication

- Coarray access

- XMP communication

ThreadSanitizer:

- Happened-before

- POSIX threads

- POSIX threads

- Happened-before

ThreadSanitizer:

- Report of data races

- Report of dead locks

- Synchronization issues

Attributed to POSIX threads

XMPT (in MUST):

- Report of data races

- Report of dead locks

- Synchronization issues

Attributed to XMP regions

Transformation

Transformation

Analysis



Experiences using XMPT
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Interface between XMP runtime and tool

… or what can go wrong with visibility of symbols?

• Main difference between XMP runtime library and most OpenMP runtime

libraries:
 XMP runtime library is statically linked into the application

• For OMPT the tool startup has significantly evolved since TR2:
 ompt_start_tool(lookup-function, version) is the single public interface 

symbol

 OpenMP runtime tries to find this function in 

▪ The application

▪ Any loaded dynamic library

▪ Any library listed in OMP_TOOL_LIBRARIES
 The tool uses the lookup-function to find all other OMPT functions
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Interface between XMP runtime and tool

… and what is the actual problem?

• XMPT relies on many xmp-functions
 These function are not visible for a dynamicly loaded tool

▪ Compile application with –rdynamic or

▪ Provide a lookup-function or

▪ Ensure to add all necessary function to the dynamic symbol table of the

application
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Information on descriptors

• XMP provides functions to query all kinds of attributes from descriptors

• A tool can store this information in an object and bind the object to the

descriptor.

• But there is no way to detect the end of lifetime for descriptors
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Source code location

• For debugging the source code location is important

• OMPT added codeptr_ra to events, this provides informations where the

pragma is placed



MUST implementation
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How can we do analysis based on XMPT events?

• There is no event for the nodes directive. 

• The first time p is seen, MUST queries all available information on p

• For task-begin
 We analyse whether (desc/subsc) is in the executing node-set

 We update the executing node-set to be (desc/subsc)

#pragma xmp nodes p(8)
int main(int argc, char** argv){
xmp_init(&argc, &argv);

#pragma xmp task on p(5:8)
{

#pragma xmp task on p(1)
{
printf("PASS\n");

}
}  
return 0;

}

1 2 3 4 5 6 7 8
xmp-task-begin

(desc=p, subscr=(5:8), 

scope-data=A)

xmp-task-begin

(desc=p, subscr=(1:1), 

scope-data=B)

xmp-task-end 

(scope-data=B)

xmp-task-end 

(scope-data=A)
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Storing information next to the descriptors

Good idea, but unfortunatelly not applicable for MUST

• We need the information not only for local

analysis, but also on other nodes for

distributed analysis

• When MUST finds an unknown descriptor, 

we create a GTI event that is propageted in 

the tree

0

2

1

3
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Tracking executing nodeset

… can be quite difficult in general case

• Is p(1) in r(2,:)?

• For the general case we recursively create a bitfield which marks active

nodes

#pragma xmp nodes p(8)
#pragma xmp nodes q(4)=p(2:5)
#pragma xmp nodes r(2,2)=p(2:8:2)

#pragma xmp task on r(2,:)
#pragma xmp task on p(1)
printf("PASS\n");

1 2 3 4 5 6 7 8

2 3 4 5

2 4

6 8
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Tracking information on descriptors
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Similar as tracking information on MPI handles
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XMPT based analyses in MUST

• We currently have most analyses implemented, which are possible with

local knowledge

• Still working on analysis of asynchronous communication

• Next is collective consistency (all do „the same thing“)

• Finally integrate Simon’s work for XMP coarray
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Summary

• Correctness tools are important

• Tools are always steps behind the development of new languages

• Tools interface is important for easier porting of tools

• Sometimes we here the question:
 Why not use a language, that prevents the issues?

 How many HPC codes are written in RUST?



Thank you for your attention.


