
Building Correctness Analysis on Top of XMPT

Joachim Protze (protze@itc.rwth-aachen.de)

3rd Workshop on Parallel Programming Models - Productivity and Applications

mailto:protze@itc.rwth-aachen.de

Building Correctness Analysis on Top of XMPT

Joachim Protze

2

Motivation

• Increasing concurrency in HPC needs new concepts of programming

• MPI + X is one candidate
 Highlights the need for multilevel parallelism

 Potentially even more levels of parallelism

• Multiple PGAS approaches were developed
 Did any of these gain acceptance?

 Why?

Key to success might be tool support

Building Correctness Analysis on Top of XMPT

Joachim Protze

3

Portable runtime correctness checking

• Can we reuse existing tools and apply them to new programming

paradigms?

• What are the common challenges?

• What are the limitations?

• How big is the effort to integrate analysis for pragma-based PGAS

approach XMP into existing MPI tool MUST?

• Data race and deadlock are major threats in parallel
 Can we define an abstract interface, that provides sufficient information to

analyse arbitrary parallel paradigms?

Building Correctness Analysis on Top of XMPT

Joachim Protze

4

Agenda

• What is XMPT? And why do we want it?

• Experiences using XMPT
 Lessons to learn for tool interfaces

• Results of applying MUST to XMP applications

Building Correctness Analysis on Top of XMPT

Joachim Protze

5

Tools interfaces

• PMPI
 Tools interface for MPI

 MPI spec describes wrapping of MPI functions

• OMPT
 Tools interface for OpenMP

 Latest OpenMP spec describes events, tool gets notification about encountered

events

• XMPT
 Tools interface for XMP, follows the specification of OMPT

 Development of XMPT started with OMPT @TR2 level

Building Correctness Analysis on Top of XMPT

Joachim Protze

6

XMPT

• What events are needed?
 Events for the begin and end of XMP regions

• What information is needed?
 Essentially, all information possibly provided to the XMP pragma

 To allow stateless implementation of the tool, the runtime stores a tool data with

scopes

 XMP already provided functions to derive information from handles

• Is this information sufficient for performance analysis?

Building Correctness Analysis on Top of XMPT

Joachim Protze

7

Example: Data race detection for XMP

XMPT (in MUST):

- Fork / join, barrier

- Async communication

- Coarray access

- XMP communication

ThreadSanitizer:

- Happened-before

- POSIX threads

- POSIX threads

- Happened-before

ThreadSanitizer:

- Report of data races

- Report of dead locks

- Synchronization issues

Attributed to POSIX threads

XMPT (in MUST):

- Report of data races

- Report of dead locks

- Synchronization issues

Attributed to XMP regions

Transformation

Transformation

Analysis

Experiences using XMPT

Building Correctness Analysis on Top of XMPT

Joachim Protze

9

Interface between XMP runtime and tool

… or what can go wrong with visibility of symbols?

• Main difference between XMP runtime library and most OpenMP runtime

libraries:
 XMP runtime library is statically linked into the application

• For OMPT the tool startup has significantly evolved since TR2:
 ompt_start_tool(lookup-function, version) is the single public interface

symbol

 OpenMP runtime tries to find this function in

▪ The application

▪ Any loaded dynamic library

▪ Any library listed in OMP_TOOL_LIBRARIES
 The tool uses the lookup-function to find all other OMPT functions

Building Correctness Analysis on Top of XMPT

Joachim Protze

10

Interface between XMP runtime and tool

… and what is the actual problem?

• XMPT relies on many xmp-functions
 These function are not visible for a dynamicly loaded tool

▪ Compile application with –rdynamic or

▪ Provide a lookup-function or

▪ Ensure to add all necessary function to the dynamic symbol table of the

application

Building Correctness Analysis on Top of XMPT

Joachim Protze

11

Information on descriptors

• XMP provides functions to query all kinds of attributes from descriptors

• A tool can store this information in an object and bind the object to the

descriptor.

• But there is no way to detect the end of lifetime for descriptors

Building Correctness Analysis on Top of XMPT

Joachim Protze

12

Source code location

• For debugging the source code location is important

• OMPT added codeptr_ra to events, this provides informations where the

pragma is placed

MUST implementation

Building Correctness Analysis on Top of XMPT

Joachim Protze

14

How can we do analysis based on XMPT events?

• There is no event for the nodes directive.

• The first time p is seen, MUST queries all available information on p

• For task-begin
 We analyse whether (desc/subsc) is in the executing node-set

 We update the executing node-set to be (desc/subsc)

#pragma xmp nodes p(8)
int main(int argc, char** argv){
xmp_init(&argc, &argv);

#pragma xmp task on p(5:8)
{

#pragma xmp task on p(1)
{
printf("PASS\n");

}
}
return 0;

}

1 2 3 4 5 6 7 8
xmp-task-begin

(desc=p, subscr=(5:8),

scope-data=A)

xmp-task-begin

(desc=p, subscr=(1:1),

scope-data=B)

xmp-task-end

(scope-data=B)

xmp-task-end

(scope-data=A)

Building Correctness Analysis on Top of XMPT

Joachim Protze

15

Storing information next to the descriptors

Good idea, but unfortunatelly not applicable for MUST

• We need the information not only for local

analysis, but also on other nodes for

distributed analysis

• When MUST finds an unknown descriptor,

we create a GTI event that is propageted in

the tree

0

2

1

3

Building Correctness Analysis on Top of XMPT

Joachim Protze

16

Tracking executing nodeset

… can be quite difficult in general case

• Is p(1) in r(2,:)?

• For the general case we recursively create a bitfield which marks active

nodes

#pragma xmp nodes p(8)
#pragma xmp nodes q(4)=p(2:5)
#pragma xmp nodes r(2,2)=p(2:8:2)

#pragma xmp task on r(2,:)
#pragma xmp task on p(1)
printf("PASS\n");

1 2 3 4 5 6 7 8

2 3 4 5

2 4

6 8

Building Correctness Analysis on Top of XMPT

Joachim Protze

17

Tracking information on descriptors

Building Correctness Analysis on Top of XMPT

Joachim Protze

18

Similar as tracking information on MPI handles

Building Correctness Analysis on Top of XMPT

Joachim Protze

19

XMPT based analyses in MUST

• We currently have most analyses implemented, which are possible with

local knowledge

• Still working on analysis of asynchronous communication

• Next is collective consistency (all do „the same thing“)

• Finally integrate Simon’s work for XMP coarray

Building Correctness Analysis on Top of XMPT

Joachim Protze

20

Summary

• Correctness tools are important

• Tools are always steps behind the development of new languages

• Tools interface is important for easier porting of tools

• Sometimes we here the question:
 Why not use a language, that prevents the issues?

 How many HPC codes are written in RUST?

Thank you for your attention.

