
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Introduction to

Parallel Performance Engineering

VI-HPS Team

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Cray)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance factors of parallel applications

■ “Sequential” performance factors
■ Computation

 Choose right algorithm, use optimizing compiler

■ Cache and memory
 Tough! Only limited tool support, hope compiler gets it right

■ Input / output
 Often not given enough attention

■ “Parallel” performance factors
■ Partitioning / decomposition

■ Communication (i.e., message passing)

■ Multithreading

■ Synchronization / locking
 More or less understood, good tool support

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 4

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tuning basics

■ Successful engineering is a combination of
■ Careful setting of various tuning parameters

■ The right algorithms and libraries

■ Compiler flags and directives

■ …

■ Thinking !!!

■ Measurement is better than guessing
■ To determine performance bottlenecks

■ To compare alternatives

■ To validate tuning decisions and optimizations
 After each step!

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 5

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 6

•Calculation of metrics

•Identification of performance
problems

•Presentation of results

•Modifications intended to
eliminate/reduce performance
problem

•Collection of performance data

•Aggregation of performance data

•Prepare application with symbols

•Insert extra code (probes/hooks)

Preparation Measurement

AnalysisOptimization

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of the code

■ Programmers typically spend 20% of their effort to get 80% of the total speedup

possible for the application
 Know when to stop!

■ Don't optimize what does not matter
 Make the common case fast!

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 7

“If you optimize everything,

you will always be unhappy.”

Donald E. Knuth

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Metrics of performance

■ What can be measured?
■ A count of how often an event occurs

■ E.g., the number of MPI point-to-point messages sent

■ The duration of some interval
■ E.g., the time spent these send calls

■ The size of some parameter
■ E.g., the number of bytes transmitted by these calls

■ Derived metrics
■ E.g., rates / throughput

■ Needed for normalization

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Inclusive vs. Exclusive values

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 11

Inclusive Exclusive

int foo()
{
int a;
a = 1 + 1;

bar();

a = a + 1;
return a;

}

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling

■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization

■ Tracing

■ How is performance data analyzed?
■ Online

■ Post mortem

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Sampling

▪ Running program is periodically interrupted to take

measurement
▪ Timer interrupt, OS signal, or HWC overflow

▪ Service routine examines return-address stack

▪ Addresses are mapped to routines using symbol table

information

▪ Statistical inference of program behavior
▪ Not very detailed information on highly volatile metrics

▪ Requires long-running applications

▪Works with unmodified executables

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 13

Time

main foo(0) foo(1) foo(2) int main()
{

int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Measurement

t
9

t
7

t
6

t
5

t
4

t
1

t
2

t
3

t
8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumentation

▪Measurement code is inserted such that every event

of interest is captured directly
▪ Can be done in various ways

▪ Advantage:
▪ Much more detailed information

▪ Disadvantage:
▪ Processing of source-code / executable

necessary

▪ Large relative overheads for small functions

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 14

Time

Measurement int main()
{

int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10 t

11
t
12

t
13

t
14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Critical issues

■ Accuracy
■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance

■ Perturbation
■ Measurement alters program behaviour

■ E.g., memory access pattern

■ Accuracy of timers & counters

■ Granularity
■ How many measurements?

■ How much information / processing during each measurement?

 Tradeoff: Accuracy vs. Expressiveness of data

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 16

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling

■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization

■ Tracing

■ How is performance data analyzed?
■ Online

■ Post mortem

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 17

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Profiling / Runtime summarization

■ Recording of aggregated information
■ Total, maximum, minimum, …

■ For measurements
■ Time

■ Counts
■ Function calls

■ Bytes transferred

■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …

■ Processes, threads

 Profile = summarization of events over execution interval

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 18

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing

■ Recording detailed information about significant points (events) during execution of

the program
■ Enter / leave of a region (function, loop, …)

■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type

■ Plus event-specific information (e.g., communicator,

sender / receiver, …)

■ Abstract execution model on level of defined events

 Event trace = Chronologically ordered sequence of event records

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 20

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing Pros & Cons

■ Tracing advantages

■ Event traces preserve the temporal and spatial relationships among individual events

(context)

■ Allows reconstruction of dynamic application behaviour on any required level of abstraction

■ Most general measurement technique
■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large

■ Writing events to file at runtime may causes perturbation

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 22

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling

■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization

■ Tracing

■ How is performance data analyzed?
■ Online

■ Post mortem

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 23

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Post-mortem analysis

■ Performance data is stored at end of measurement run

■ Data analysis is performed afterwards

■ Automatic search for bottlenecks

■ Visual trace analysis

■ Calculation of statistics

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 25

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Time-line visualization

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 26

58 A ENTER foo

60 B ENTER bar

62 A SEND to B

64 A EXIT foo

68 B RECV from A

...

69 B EXIT bar

...

main
foo
bar

58 60 62 64 66 68 70

B

A

Global trace view

Post-Mortem

Analysis

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

No single solution is sufficient!

A combination of different methods, tools and techniques is typically needed!

▪ Analysis
▪ Statistics, visualization, automatic analysis, data mining, ...

▪Measurement
▪ Sampling / instrumentation, profiling / tracing, ...

▪ Instrumentation
▪ Source code / binary, manual / automatic, ...

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 27

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Typical performance analysis procedure

■ Do I have a performance problem at all?
■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?
■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?
■ Call-path profiling, detailed basic block profiling

■ Why is it there?
■ Hardware counter analysis, trace selected parts to keep trace size manageable

■ Does the code have scalability problems?
■ Load imbalance analysis, compare profiles at various sizes function-by-function

PPCES 2019 (RWTH AACHEN UNIVERSITY, 11-15 MARCH 2019) 28

