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Please note that it is not expected that you work on all exercises during this 
workshop. Rather, they shall give you an option if you have time left or if you are 

interested in a certain topic.   
 

If you need help or have any question please do not hesitate to ask! 

1 RWTH GPU Cluster Environment 

1.1 Login & Setup 

Use your own laptop or one of the provided laptops for logging in. 

1. Login to the frontend node (login18-1.hpc.itc.rwth-aachen.de) of the RWTH 

CLAIX2018 GPU Cluster: 

Use the hpclab<XY> account and the provided password. Due to special 

hardware reservations and corresponding restrictions, your own HPC account will not 
work for this lab. 

2. Log onto the GPU node whose name was handed out to you by typing: 

ssh –l hpclab<XY> ncg<number> -Y 

Use the password of your hpclab account to get access to the node. 

For setting up the correct environment, do the following: 

1. Since the programs will be run interactively, e. g. with make run, and the two GPUs 

are shared between two people, please set the variable CUDA_VISIBLE_DEVICES 

to the value provided on the hand-out: 

export CUDA_VISIBLE_DEVICES=<value>  

This will make sure the execution of your program will not block both GPUs. You can 
check the value of this environment variable like this: 

echo $CUDA_VISIBLE_DEVICES 

https://doc.itc.rwth-aachen.de/display/VE/PPCES+2019
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2. Make PGI’s OpenACC compiler available by switching from the default Intel compiler 
to the PGI compiler: 

module switch intel pgi/18.10 

3. Load the CUDA toolkit to make its tools available 

module load cuda/92 

1.2 Getting GPU Information  

Before you start programming GPGPUs, check your used GPU hardware by: 

pgaccelinfo 

If everything works properly, you will get a list of the most important features of your GPU. 
Complete Table 1 with the Cluster GPU details. 

Table 1: Output of pgaccelinfo 

Feature Value 

Name of device  

Number of multiprocessors  

CUDA compute capability (cc)1  

 

1.3 Compiling & Executing the Examples 

In the GPU directory, you can find all sources for the programming lab. The directory structure 

looks as follows: 

 exercises 

 solutions 

 openmp 

In the exercises folder, you will find C-skeletons for all tasks that will be covered during 

this lab. You can compile and run your code with the provided Makefiles: 

make help 

make [jacobi] 

dbg=1 

make run   

threads=<numOmpThreads> |  

time=1                  |  

notify=<verbosityLevel> | 

rows=<rowsOnCPU>        ] 

 

make gprof 

make clean 

 Get information 
Compile 

- with debug information 
Run   

- with given number of OpenMP threads 
- enable timing information 
- enable runtime notifications 
- modify the no of matrix rows on the 
CPU (only hetero versions) 

Profile the (CPU) code using gprof 
Clean 

                                                           
1 The compute capability (cc) corresponds to the core architecture of the GPU and describes the features supported by the 
CUDA-capable GPU. For instance, you need a device of cc 1.3 or higher to enable double precision floating point operations. 

The PGI compiler calls this device revision number. 
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2 Jacobi Iteration 

During the following exercises, you will port a Jacobi solver to OpenACC. This Jacobi 
example solves a finite difference discretization (5-point-stencil) of the Laplace equation 
(2D): 

𝛁𝟐𝑨(𝒙, 𝒚) = 𝟎 
using the Jacobi iterative method. To this end, the Jacobi method starts with an 
approximation of the objective function f(x,y) and reuses formerly-computed matrix elements 
to solve the current one (see Figure 2). It iterates only about the inner elements of the 2D-
grid (see Figure 1) so that the boundary elements are only used within the stencil.  The 
solving process is aborted if either a certain number of iterations is achieved (see 

iter_max) or the computed approximation is probably close to the solution. In this code, the 

latter is evaluated by checking whether the biggest change on any matrix element (see array 

err and variable err) is smaller than a given tolerance value, in the current iteration. 

 
 

Figure 1: 5-point stencil 

 

 

Figure 2: Computation of matrix element 
A(i,j) 

2.1 Reference Version 

First, execute the OpenMP reference version: 

a) Move to the folder openmp. 

b) Profile the serial code using gprof by calling make gprof. It will take one to two 

minutes. The console output contains a “Flat profile” that lists the percentages of runtime 
for compute-intensive code lines. Find out where the three most time-consuming code 
lines are in the code. They will map to a certain for loops. 

c) Now, try executing the OpenMP Jacobi version with 48 threads by running make run 
threads=48 

d) Check the output and write down the runtime in Table 2. 

Table 2: Runtimes of different Jacobi implementations 

Task Software  Hardware Runtime [sec] 

1 OpenMP  2x Intel Skylake (= 48 cores)   

2 OpenACC-Offload  1x NVIDIA Tesla V100  

4 OpenACC-Data 1x NVIDIA Tesla V100  

5 OpenACC-Collapse 1x NVIDIA Tesla V100  

6 OpenACC-Hetero 1x NVIDIA Tesla V100 + 
2x Intel Skylake 

 

7 OpenACC-MultiGPU 2x NVIDIA Tesla V100 + 
2x Intel Skylake 

 

8 OpenMP-PtrSwap 2x Intel Skylake (= 48 cores)   

8 OpenACC-PtrSwap 1x NVIDIA Tesla V100  

𝐴𝑘+1(𝑖, 𝑗) =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘(𝑖 + 1, 𝑗) + 𝐴𝑘(𝑖, 𝑗 − 1) + 𝐴𝑘(𝑖, 𝑗 + 1) 

4
 

  

  A(i,j) A(i+1,j) A(i-1,j) 

A(i,j-1) 

A(i,j+1) 
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2.2 Offloading Work 

Now, you start writing your first OpenACC program. Move to the folder 

exercises/task1_basic and modify the source code file jacobi.c. Follow the TODOs in 

the code: 

a) Use the acc parallel and loop directives to parallelize (only) the one most compute-

intensive loop from section 2.1. Denote all needed clauses. 

b) Compile your code using make and have a look at the output.  

a) Make sure that, for GPU kernels, the line “Accelerator kernel generated” is 

printed. 

b) Check which data and how many elements are moved forth and back to the GPU. 

c) Execute your program using the command make run. It might take a few minutes. 

How fast does this version execute? Write down the runtime in Table 2. 

Optional Task 1 – Pinned Memory 

a) Read slide 138 about the usage of pinned memory 

b) Take the solution from Task 2.2 as foundation. Open the corresponding Makefile and 

apply the pinned flag to the CFLAGS and LDFLAGS variables. 

c) Recompile the code: make clean & make 

d) Run the code using pinned memory and compare the runtime to the version without 
pinned memory. 

Optional Task 2 – Roofline Model 

a) Work on Task 2.9 “Roofline Model” 
b) Use the task7_roofline code version as mentioned 

2.3 Tools 

As you might have recognized, your first OpenACC version is slow. In this task, you will 

figure out why. To this end, using profiling tools are a good approach. IMPORTANT: Please 

reduce the number of iterations to 5 (variable iter_max) when profiling your program to 

avoid long waiting times. 

PGI Timing Environment 

The PGI compiler enables a simple way to get some basic timing information of your code. 

You just have to set the environment variable PGI_ACC_TIME to a positive integer. Using the 

Makefiles provided, you can enable this option by running your code with: 

make run time=1 

a) Reduce the number of iteration (variable iter_max) in jacobi.c to 5. 

b) Compile your code and run it using the timing flag mentioned above. A small runtime 
overhead might be introduced for collecting corresponding data. 

c) Examine the output at the end of the program run. How much time was spent for the 
kernel execution and how much time was spent for the data transfers? 
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NVIDIA Visual Profiler 

Another way to analyze the performance of your code is NVIDIA’s Visual Profiler that ships 
with the CUDA toolkit. It provides a graphical user interface and more detailed information on 

kernel executions. If you have any problems with the Java Runtime, set export 
JAVA_TOOL_OPTIONS=”-Xmx4096m  

-Dorg.eclipse.swt.internal.gtk.cairoGraphics=false”.  

a) Make sure you have switched the compiler from intel to pgi and loaded the cuda 

module (see instructions at the beginning of the exercise sheet) before starting the 
profiler. 

b) Then, start the Visual Profiler: nvvp & 

c) Create a new session. 

d) In the Executable Properties, choose your executable file. 

e) Click Next, disable unified memory profiling and click Finish. 

f) In the left pane, click on MemCpy(HtoD) and MemCpy(DtoH). Now, you can see the 

duration of the Memcpy command on the right hand side in the tab Properties. If you 

click on the different kernels that are listed under Compute (left pane), the kernel 

duration is displayed in the properties tab as the sum of all kernel executions. 

g) Now, try the Guided Analysis: Activate the Analysis tab and Examine GPU 

Usage. Have a look at the first entry. What does it say? If you have lots of time left for 

the lab session, also have a look at the other entries. Read their explanations. Can we 
do anything about these issues? 

h) Can you see where data is moved between host and device in the timeline? It might be 
necessary to zoom into the timeline. When do we want to have the data copied between 
host and device? 

i) Close the Visual Profiler’s tab as soon as you are done to enable other participants to 
work with the tool. 

If you need help in understanding the plots/tables, ask one of our team members. 

PGI OpenACC Debugging 

Debugging with PGI’s OpenACC is supported by common debuggers such as RogueWave’s 
TotalView or ARM’s DDT. However, for the purpose of this task, we rely on PGI’s command-
line feedback. 
 
a) Some offload information is available during runtime using the environment variable 

PGI_ACC_NOTIFY. Using the provided Makefile, you can enable this by 
make run notify=3 

b) Run your program (make run notify=3). Which information do you get?  

2.4 Data Transfers 

As starting point for the second OpenACC programming task, you can either use your source 

code that you have just created or you can move to the folder task2_data and work on the 

source files located there (and follow the TODOs in the code). 

a) Increase the number of iterations back to 100 (variable iter_max). 

b) Use the acc data directive to remove the excess of data transfers. You may offload 

more loops to the GPU and use the present clause for defining the data status. 
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c) Examine the compiler feedback. Can you see any changes? 

d) Use to make run to execute your program. How fast is your program now? Write down 

the runtime in Table 2. 

e) Profile your code again using PGI’s timing information (make run time=1) or the Visual 

Profiler (nvvp &). Can you see any changes? Again, close the profiler as soon as you 

are done. 

Optional Task 1 – Eliminating Data Swapping 

a) Work on Task 2.8 “Eliminating Data Swapping” 

Optional Task 2 – Roofline Model (if not yet done) 

a) Work on Task 2.9 “Roofline Model” 
b) Use the task7_roofline code version as mentioned 

2.5 Further Tuning 

In this task, we want to improve the occupancy of the compute-intensive kernel. You can 
either use your code from the previous task or use the code located in the folder 

task3_tuning. 

a) Reduce the number of iterations to 5 (variable iter_max) before starting the 

performance analysis. 

b) Due to a bug in the NVIDIA Visual Profiler, you need to use the command line tool 

nvprof. One advantage of nvprof is that you can run it without interaction. Collect all 

needed metrics for a guided analysis by specifying: 

nvprof –f –o base.nvprof --analysis-metrics <executable> 

This may take several minutes. 

c) Now, open the NVIDIA Visual Profiler on your GPU cluster node: nvvp & 

d) Import the file base.nvprof that you have created in step b: File  Import  

Nvprof  Single process. Then select the file as timeline data file. Disable 

fixed width segments for unified memory timeline. 

e) Go to the Analysis tab and make sure that the Guided analysis button is selected. 

Click on Examine Individual Kernels.  

f) Choose the top kernel (most compute-intensive one) in the right pane. Then, Perform 

Kernel Analysis. What does the tool suggest to be the main performance limiter of 

that kernel? 

g) Continue to investigate this performance limiter. Click on Perform Memory 

Bandwidth Analysis and investigate GPU Utilization.  

h) The NVIDIA Profiler suggests to work on Shared Memory. While this is a good idea for 

stencil codes, the given hints will not help a lot. Instead, you should try to increase the 

amount of shared memory used. This can be done by the cache clause or implicitly by 

restructuring the data access so that the compiler can optimize on shared memory itself. 

Follow the latter approach by using the tile clause. Apply the tile clause to the most-

compute intensive loop and also the second GPU loop. Play around with different tile 

sizes. 

i) Collect nvprof data from this tuned program version by running: 
nvprof –f –o tuned.nvprof –-analysis-metrics <executable> 
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j) How much speedup did you get? Write down the runtime in Table 2.  

k) Now, redo the performance analysis by importing tuned.nvprof. Directly compare the 

performance limiters and the shared memory bandwidth.  

Optional Task 1 – Loop Schedules 

a) Read slides 110-122 on launch configurations and loop schedules 
b) Check out the loop schedule that is automatically applied to the Jacobi code (see 

compiler feedback) 
c) Try out different launch configurations and loop schedules and investigate the 

performance difference. 

d) Especially, try gang vector on the outer loop and seq on the inner loop of the loop 

nests. Investigate the performance. Why is the runtime so much slower? You can use the 
Visual Profiler to get an idea. 

Optional Task 2 – Eliminating Data Swapping (if not yet done) 

a) Work on Task 2.8 “Eliminating Data Swapping” 

Optional Task 3 – Roofline Model (if not yet done) 

a) Work on Task 2.9 “Roofline Model” 
b) Use the task7_roofline code version as mentioned 

2.6 Heterogeneous Computing 

So far, the compute-intensive code ran only on the GPU. However, it is often a good idea to 
utilize all available compute resources. Therefore, you should enable heterogeneous 
computing in this task by letting the CPU compute simultaneously to the GPU. 
In this case, you should give the GPU more work to do than the CPU by distributing 

matrix rows to the GPU (see  
Figure 3). Be aware that you have to exchange some halo data between host and device 
(Figure 4) in each iteration. 

GPU 

CPU 

0 

14384 

14385 

16384 

…
 

. .
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Figure 3: Work distribution between CPU and 

GPU 
 

 

 
 

Figure 4: Halo exchange between CPU 
and GPU 

 

Please use the skeleton in folder task4_hetero and follow these instructions and the 

TODOs in the code (recommended because of limited lab time) [or see “or” below]. 

a) Decompose the matrix rows to GPU and CPU. See the variable n_cpu that denotes the 

number of rows that shall be computed on the CPU. Use it and the corresponding index 

j_cpu_start to distribute the loops. Later you will have to adapt this value. 

b) Use the async clause to enable overlap of CPU and GPU computational work. 

c) Use OpenMP to fully utilize the CPU. You need #pragma omp parallel for on the 

for loops of the iteration process. However, you should also specify OpenMP’s data and 

reduction clauses if appropriate. Some loops were already parallelized with OpenMP 

for you to ensure good data locality. If you run the application at the end, don’t forget to 

increase the number of threads by make run threads=<noThreads>.  

d) Use the update directive to manage the halo data exchange. While it is possible to also 

overlap data transfers with computations using the async clause on updates directives, 

you should not implement it for this task. 

e) The OpenACC specification says that reduction variables are directly copied back to the 
host after the loop. However, this would prevent simultaneous execution of the first loop 

on CPU and GPU. Therefore, you have to decouple the reduction copy of acc_err from 

the computation and update its value manually: Put acc_err into the data region and 

update it before and (when needed) after the computation loop. 

f) Think about synchronizing data again. Do you have to insert a wait directive to avoid 

inconsistent data? 

g) Fix the calculation of err. 

h) What is the runtime of this heterogeneous version? Play around with the decomposition 

size of the matrix. Use make run rows=<rowsOnCPU> threads=<noThreads> to 

do so. Write down the shortest runtime in Table 2. 

 
or start from your source code that you have already implemented and follow these steps 

a) Define a variable that denotes the matrix split between host and device.  
For this domain decomposition, which data is needed on which architecture? Don’t forget 
that we need a stencil for updating one matrix element. 

b) Split all compute-intensive loops along this variable (matrix element computation and 
swap loop). Make sure to reduce the error variable of both loop parts after splitting the 
reduction loop. 

GPU 

CPU 

0 

14384 

14385 

16384 

…
 

. .
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c) Afterwards, execute one part of the loop on the GPU and simultaneously the other part of 

the loop on the CPU. You might need the async clause. 

d) Before the swap loop, the halo data must be exchanged (see Figure 3) which can be 

done using the update directive. While it is possible to also overlap data transfers with 

computations using the async clause on updates directives, you should not implement 

it for this task. 

e) The OpenACC specification says that reduction variables are directly copied back to the 
host after the loop. However, this would prevent simultaneous execution of the first loop 

on CPU and GPU. Therefore, you have to decouple the reduction copy of acc_err from 

the computation and update its value manually: Put acc_err into the data region and 

update it before and (when needed) after the computation loop. 

f) Think about synchronizing data again. Where must a wait directive be used to avoid 

inconsistent data? 

g) Parallelize the CPU code using OpenMP. You will usually only need #pragma omp 

parallel for. You should also use OpenMP’s reduction clause where appropriate. 

If you run the application at the end, don’t forget to increase the number of threads by 

make run threads=<noThreads>. 

h) What is the runtime of this heterogeneous version? Play around with the decomposition 
size of the matrix. Write down the shortest runtime in Table 2. 

2.7 Multiple GPUs 

If you have a cluster of GPU nodes, you can utilize their compute power by having an MPI 
program that runs on different nodes with GPUs. If you have several GPUs within one node, 
you can use both accelerators simultaneously even easier by specifying in your program 
which one to use by OpenACC API calls. Here, you will do the latter.  
To distribute the work, we follow the strategy described in section 2.6 Heterogeneous 
Computing. The only difference is that we now have three partitions: one on GPU 0, one on 
GPU 1 and one on the CPU (as shown in Figure 5).  
 

 

Figure 5: Work distribution between two GPUs and a 2-socket CPUs 
 
You can either start from your source code that you have already implemented or use the 

skeleton in the folder task5_multigpu (and follow the TODOs in the code). 

a) On the CLAIX-GPU nodes, you have 2 GPUs available. Make sure to temporarily (!) set 

export CUDA_VISIBLE_DEVICES=0,1 to gain access to both. 

GPU 
0 

CPU 

0 

15184 

15185 

16384 

…
 

. . 

GPU 
1 

7593 

…
 

7592 
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b) Leave the CPU matrix size as it is and divide evenly the number of rows, which were 
located on one GPU so far, to both GPUs. 

c) For specifying that the following OpenACC pragmas shall be executed on a certain GPU, 

the OpenACC API call acc_set_device_num(<id>,acc_device_nvidia)is used. 

You have to include openacc.h for using API routines. 

d) Start by moving only the necessary data to GPU 0 and GPU 1. Therefore, exchange the 

structured data region to unstructured enter data directives. Don’t forget to create 

the reduction variables for both GPUs explicitly on the devices. After the equation system 

was solved, delete temporary data and copy back the result matrix. Use exit data for 

that. 

e) Note that you have to manually update the reduction variables on both GPUs now. 

f) Before the swap loop, the halo data must be exchanged (see Figure 5) which can be 

done using the update directive. The first GPU needs to update its last matrix row, the 

second GPU needs to update its first and last row and the CPU needs to update its first 
row. Make sure that the data is synchronized. 

g) Combine the reduction variables of both GPUs and the CPU. 

h) Determine a good value for the number of rows on the CPU by playing around with make 

run rows=<rowsOnCPU> threads=<noThreads>. Use the results from the previous 

task to obtain reasonable starting values. 

i) What is the runtime of this heterogeneous multi-device version (make run 

rows=<rowsOnCPU> threads=<noThreads>)? Write down the shortest runtime in 

Table 2. 

2.8 Eliminating Data Swapping 

When (or even before) diving into GPU and kernel tuning, you should usually also consider 
algorithmic optimizations. In this task, you will eliminate the second computational loop and 
thereby decrease runtime. 
 
As starting point for this task, you can either use your source code that you created in Task 

2.5 (!) or you can move to the folder task6_ptrswap and work on the source files located 

there (and follow the TODOs in the code).  

a) Make sure to copyin matrix A and create matrix Anew on the device. To avoid 

accessing uninitialized elements, the boundaries of matrix Anew need to be initialized. 

Copy the required values from A into Anew using an additional accelerator kernel. 

b) Eliminate the second loop which just copies the matrix Anew into the original matrix A by 

using host pointer swapping. 

c) How fast is your program now (make run)? Write down the runtime in Table 2. 

d) To obtain a comparable runtime for the reference OpenMP version, go to the openmp 

directory and run it with pointer-swapping enabled by using 
make run ptr_swap=1 threads=24  

Write down the runtime in Table 2. 

2.9 Roofline Model 

Finally, we might want to ask how close our current version is compared to sustainable peak 
performance on that particular GPU. For that, the roofline model2 is a good approach. The 

                                                           
2 Williams, S., Waterman, A., Patterson, D.: Roofline: An Insightful Visual Performance Model for Multicore Architectures. 
Communications of the ACM, 65–76, 2009. 
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roofline model defines the peak performance of an architecture by looking at the memory 
bandwidth (for memory-bound kernels) and on the theoretical peak GFlop/s (for compute-
bound kernels). The operational intensity [Flop/Byte] is given by the algorithm and thereby 
defines the performance limit. 
 
In Figure 6, you can find the roofline for an NVIDIA Volta V1003. The kernel’s operational 
intensity can be determined either by manual counting Flops and Bytes in the source code, 
or by approximating the corresponding values by measurement. Here, you will look at the 
measured values by using the NVIDIA Profiler. 
 
We only consider the remaining compute-intensive kernel (without the reduction). You can 
either use your code from the previous exercises (but no heterogeneous/multi GPU 

computations) or the code from the directory task7_roofline. 

 

Figure 6: Performance roofline for a NVIDIA Volta V100 GPU. Peak double precision 
floating point performance are 7.8 TFlop/s. The peak sustainable memory bandwidth 

(to device memory) is 900 GB/s. 

a) We use performance counters on floating point operations and memory instructions to 
compute the operational intensity. For this task, you will use the command line tool of the 
NVIDIA Profiler (named nvprof) - although all measurements are also configurable in 
the GUI. IMPORTANT: Please reduce the number of iterations to 5 (variable iter_max) 
when profiling your program to avoid long waiting times. 
nvprof --metrics flop_count_dp,dram_read_transactions,dram_write_transactions ./jacobi 

Also collect the kernel runtimes: 
nvprof --print-gpu-trace ./jacobi 

b) Collect the average values for the kernel, and compute the operational intensity for 
double precision by: 

FLOP

Byte
=

flop_count_dp

(dram_read_transactions + dram_write_transactions) ∙ 32
 

Note that you have to multiply the number of transaction to/from the device memory by 
32 since each transactions takes place in 32 Byte chunks. 

                                                           
3 NVIDIA: Specifications: http://www.nvidia.com/object/product-quadro-6000-us.html 
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c) Read the maximum theoretical performance from Figure 6 or compute it: 

min(operational intensity [Flop/B] ∙ 900 [GB/s],  7.8 [TFlop/s]) 

d) To evaluate which portion of the theoretical peak performance is reached, you have to 
read the duration (in seconds) of the kernel from the GPU trace: 

flop_count_dp [Flop] / duration [s] 

e) How close does the kernel get to the theoretical peak performance? 
 
Note that this approach (that evaluates the operational intensity by measuring) is not the 
most accurate one, but a good first approach. Also, be aware that the measured values must 
not be the optimal ones. For example, if you do additional floating point operations in the 
kernel that do not contribute to the actual result, the measured operational intensity might get 
mistakenly increased. 


