
Introduction to OpenMP THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

Dr. Christian Terboven

Introduction to OpenMP

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Worksharing

Introduction to OpenMP

Dr. Christian Terboven

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

For Worksharing

 If only the parallel construct is used, each thread executes the Structured Block.

 Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

 Distribution of loop iterations over all threads in a Team.

 Scheduling of the distribution can be influenced.

 Loops often account for most of a program‘s runtime!

C/C++

int i;

#pragma omp for

for (i = 0; i < 100; i++)

{

a[i] = b[i] + c[i];

}

Fortran

INTEGER :: i

!$omp do

DO i = 0, 99

a[i] = b[i] + c[i]

END DO

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Worksharing illustrated

do i = 0, 99

a(i) = b(i) + c(i)

end do

do i = 0, 24

a(i) = b(i) + c(i)

end do

do i = 25, 49

a(i) = b(i) + c(i)

end do

do i = 50, 74

a(i) = b(i) + c(i)

end do

do i = 75, 99

a(i) = b(i) + c(i)

end do

Memory

Pseudo-Code
Here: 4 Threads Thread 1

Thread 2

Thread 3

Thread 4

Serial

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Introduction to OpenMP

Vector Addition DEMO

Dr. Christian Terboven

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Influencing the For Loop Scheduling

 for-construct: OpenMP allows to influence how the iterations are scheduled among the

threads of the team, via the schedule clause:

 schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are

assigned to threads in a round-robin fashion. If chunk is not specified: #threads blocks.

 schedule(dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified:

1) size, blocks are scheduled to threads in the order in which threads finish previous blocks.

 schedule(guided [, chunk]): Similar to dynamic, but block size starts with

implementation-defined value, then is decreased exponentially down to chunk.

 Default on most implementations is schedule(static).

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Synchronization Overview

 Can all loops be parallelized with for-constructs? No!

 Simple test: If the results differ when the code is executed backwards, the loop iterations are not

independent. BUT: This test alone is not sufficient:

 Data Race: If between two synchronization points at least one thread writes to a memory

location from which at least one other thread reads, the result is not deterministic (race

condition).

C/C++

int i, int s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Synchronization Overview

 Can all loops be parallelized with for-constructs? No!

 Simple test: If the results differ when the code is executed backwards, the loop iterations are not

independent. BUT: This test alone is not sufficient:

 Data Race: If between two synchronization points at least one thread writes to a memory

location from which at least one other thread reads, the result is not deterministic (race

condition).

C/C++

int i, int s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}

This is a combined

construct, which is

semantically equivalent to
#pragma omp parallel

#pragma omp for

for(...) {…}

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Synchronization: Critical Region

 A Critical Region is executed by all

threads, but by only one thread

simultaneously (Mutual Exclusion).

 Do you think this solution scales well?

C/C++

#pragma omp critical (name)

{

... structured block ...

}

C/C++

int i, s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i]; }

}

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Introduction to OpenMP

The Barrier Construct

Dr. Christian Terboven

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

The Barrier Construct

 OpenMP barrier (implicit or explicit)

 Threads wait until all threads of the current Team have reached the barrier

 All worksharing constructs contain an implicit barrier at the end

C/C++

#pragma omp barrier

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Introduction to OpenMP

Single and Master Construct

Dr. Christian Terboven

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

The Single Construct

 The single construct specifies that the enclosed structured block is executed by only on

thread of the team.

 It is up to the runtime which thread that is.

 Useful for:

 I/O

 Memory allocation and deallocation, etc. (in general: setup work)

 Implementation of the single-creator parallel-executor pattern as we will see soon…

C/C++

#pragma omp single [clause]

... structured block ...

Fortran

!$omp single [clause]

... structured block ...

!$omp end single

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

The Master Construct

 The master construct specifies that the enclosed structured block is executed only by

the master thread of a team.

 Note: The master construct is no worksharing construct and does not contain an implicit

barrier at the end.

C/C++

#pragma omp master[clause]

... structured block ...

Fortran

!$omp master[clause]

... structured block ...

!$omp end master

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Introduction to OpenMP

Runtime Library

Dr. Christian Terboven

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Runtime Library

 C and C++:

 If OpenMP is enabled during compilation, the preprocessor symbol _OPENMP is defined.

To use the OpenMP runtime library, the header omp.h has to be included.

 omp_set_num_threads(int): The specified number of threads will be used for the

parallel region encountered next.

 int omp_get_num_threads: Returns the number of threads in the current team.

 int omp_get_thread_num(): Returns the number of the calling thread in the team, the

Master has always the id 0.

 Additional functions are available, e.g. to provide locking functionality.

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Questions?

