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For Worksharing

 If only the parallel construct is used, each thread executes the Structured Block.

 Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

 Distribution of loop iterations over all threads in a Team.

 Scheduling of the distribution can be influenced.

 Loops often account for most of a program‘s runtime!

C/C++

int i;

#pragma omp for

for (i = 0; i < 100; i++)

{

a[i] = b[i] + c[i];

}

Fortran

INTEGER :: i

!$omp do

DO i = 0, 99

a[i] = b[i] + c[i]

END DO
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Worksharing illustrated

do i = 0, 99

a(i) = b(i) + c(i)

end do

do i = 0, 24

a(i) = b(i) + c(i)

end do

do i = 25, 49

a(i) = b(i) + c(i)

end do

do i = 50, 74

a(i) = b(i) + c(i)

end do

do i = 75, 99

a(i) = b(i) + c(i)

end do

Memory

Pseudo-Code
Here: 4 Threads Thread 1

Thread 2

Thread 3

Thread 4
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Influencing the For Loop Scheduling

 for-construct: OpenMP allows to influence how the iterations are scheduled among the

threads of the team, via the schedule clause:

 schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are

assigned to threads in a round-robin fashion. If chunk is not specified: #threads blocks.

 schedule(dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 

1) size, blocks are scheduled to threads in the order in which threads finish previous blocks.

 schedule(guided [, chunk]): Similar to dynamic, but block size starts with

implementation-defined value, then is decreased exponentially down to chunk.

 Default on most implementations is schedule(static).
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Synchronization Overview

 Can all loops be parallelized with for-constructs? No!

 Simple test: If the results differ when the code is executed backwards, the loop iterations are not 

independent. BUT: This test alone is not sufficient:

 Data Race: If between two synchronization points at least one thread writes to a memory 

location from which at least one other thread reads, the result is not deterministic (race 

condition).

C/C++

int i, int s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}
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Synchronization Overview

 Can all loops be parallelized with for-constructs? No!

 Simple test: If the results differ when the code is executed backwards, the loop iterations are not 

independent. BUT: This test alone is not sufficient:

 Data Race: If between two synchronization points at least one thread writes to a memory 

location from which at least one other thread reads, the result is not deterministic (race 

condition).

C/C++

int i, int s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}

This is a combined 

construct, which is 

semantically equivalent to
#pragma omp parallel

#pragma omp for

for(...) {…}
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Synchronization: Critical Region

 A Critical Region is executed by all 

threads, but by only one thread 

simultaneously (Mutual Exclusion).

 Do you think this solution scales well?

C/C++

#pragma omp critical (name)

{

... structured block ...

}

C/C++

int i, s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i];  }

}
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The Barrier Construct

 OpenMP barrier (implicit or explicit)

 Threads wait until all threads of the current Team have reached the barrier

 All worksharing constructs contain an implicit barrier at the end

C/C++

#pragma omp barrier
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The Single Construct

 The single construct specifies that the enclosed structured block is executed by only on 

thread of the team.

 It is up to the runtime which thread that is.

 Useful for:

 I/O

 Memory allocation and deallocation, etc. (in general: setup work)

 Implementation of the single-creator parallel-executor pattern as we will see soon…

C/C++

#pragma omp single [clause]

... structured block ...

Fortran

!$omp single [clause]

... structured block ...

!$omp end single
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The Master Construct

 The master construct specifies that the enclosed structured block is executed only by

the master thread of a team.

 Note: The master construct is no worksharing construct and does not contain an implicit

barrier at the end.

C/C++

#pragma omp master[clause]

... structured block ...

Fortran

!$omp master[clause]

... structured block ...

!$omp end master
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Runtime Library

 C and C++:

 If OpenMP is enabled during compilation, the preprocessor symbol _OPENMP is defined.

To use the OpenMP runtime library, the header omp.h has to be included.

 omp_set_num_threads(int): The specified number of threads will be used for the

parallel region encountered next.

 int omp_get_num_threads: Returns the number of threads in the current team.

 int omp_get_thread_num(): Returns the number of the calling thread in the team, the

Master has always the id 0.

 Additional functions are available, e.g. to provide locking functionality.
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Questions?


