

Sun.

Throughput Computing - Why and How?

Partha Tirumalai, Ruud van der Pas, Scalable Systems Group, Sun Microsystems

High-Performance Computing on Sun - Today and Tomorrow RWTH Aachen University, Germany
October 5-6, 2004

RvdP-PT/V1.0

1

Objectives

- □ Why
 - Explain Sun's Throughput Computing strategy
- □ How
 - UltraSPARC IV Architecture
 - Back up Sun's Throughput Computing strategy with data

Outline

- □ Sun's Throughput Computing Strategy
- □ UltraSPARC IV Architecture Overview
- □ The PEAS Test Suite
 - Testing Circumstances
 - Description Of The Test Suite
 - PEAS Single Processor Results
 - PEAS Throughput Results
- □ Conclusions

RvdP-PT/V1.0

3

Sun's Throughput Computing Strategy

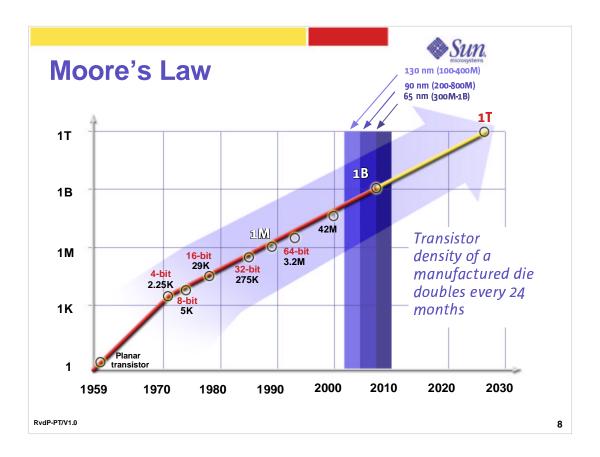
Network Computing Is Thread Rich

Web services, Java[™] applications, database transactions, ERP . . .

RvdP-PT/V1.0 5

Attributes of Various Workloads

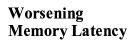
	Web Services			Client Server		Data Warehouse
Attribute	Web (Web99)	App Serv (JBB)	Data (TPC-C)	SAP 2T	SAP 3T (DB)	DSS (TPC-H)
Application Category	Web Server	Server Java	OLTP	ERP	ERP	DSS
Instruction-level Parallelism	Low	Low	Low	Medium	Low	High
Thread-level Parallelism	High	High	High	High	High	High
Instruction/Data Working Set	Large	Large	Large	Medium	Large	Large
Data Sharing	Low	Medium	High	Medium	High	Medium


Network Computing Is Thread Rich

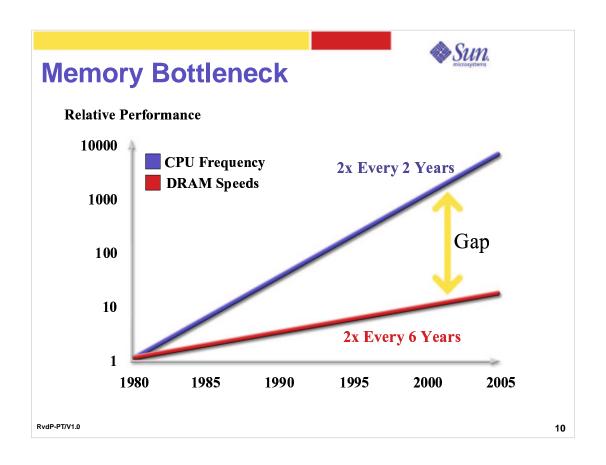
Web services, Java''' applications, database transactions. ERP . . .

Moore's Law

A fraction of the die can already build a good processor core; how am I going to use a billion+ transistors?


Network Computing Is Thread Rich

Web services, Java[™] applications, database transactions, ERP . . .


Moore's Law

A fraction of the die can already build a good processor core; how am I going to use a billion transistors?

RvdP-PT/V1.0

Network Computing Is Thread Rich

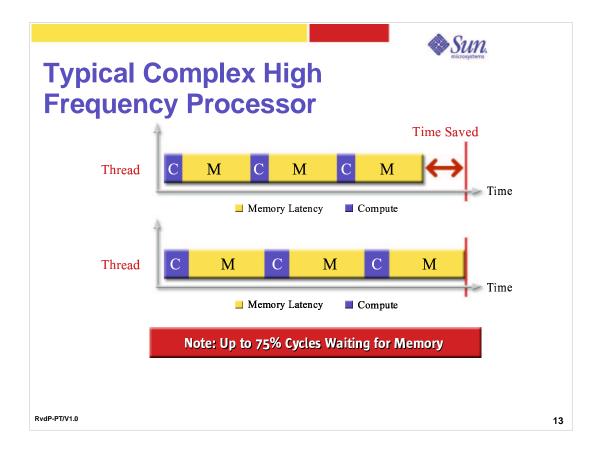
Web services, Java[™] applications, database transactions. ERP . . .

A fraction of the die can already build a good processor core; how am I going to use a billion transistors?

It's approaching 1000s of CPU cycles! Friend or foe?

Growing Complexity of Processor Design

Forcing a rethinking of processor architecture — modularity, less is more, time-to-market


RvdP-PT/V1.0

RvdP-PT/V1.0

11

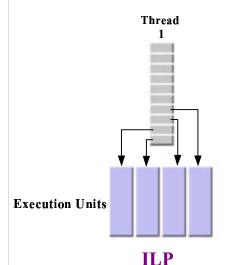
12

Cama The Big Bang Is Happening -4 Converging Trends **Network Computing** Moore's Law Is Thread Rich A fraction of the die can already build a good processor core; how Web services, Java™ am I going to use a billion applications, database transistors? transactions, ERP . . . **Growing Complexity** Worsening of Processor Design **Memory Latency** It's approaching 1000s Forcing a rethinking of processor of CPU cycles! Friend or foe? architecture modularity, less is more, time-to-market

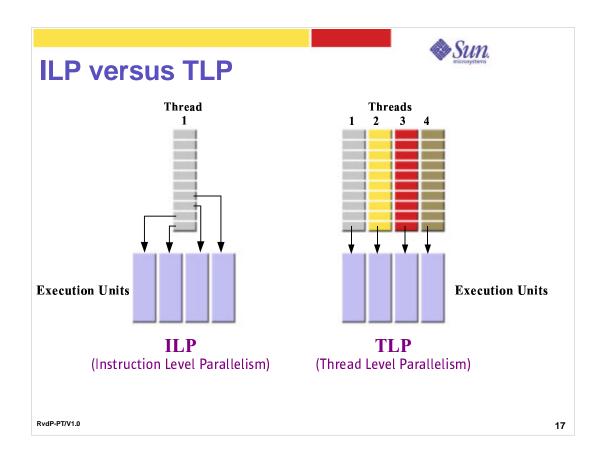
Design Complexity

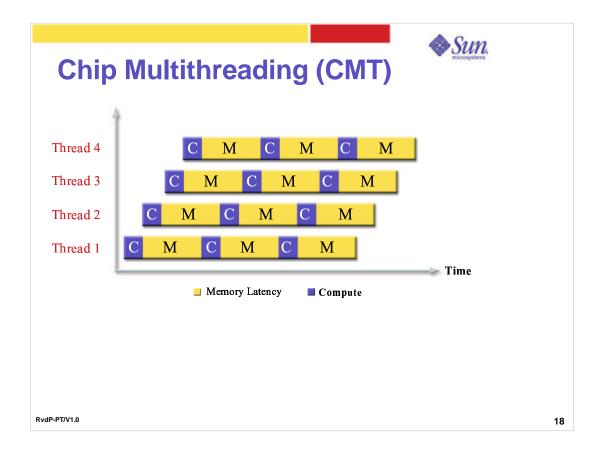
Sun.

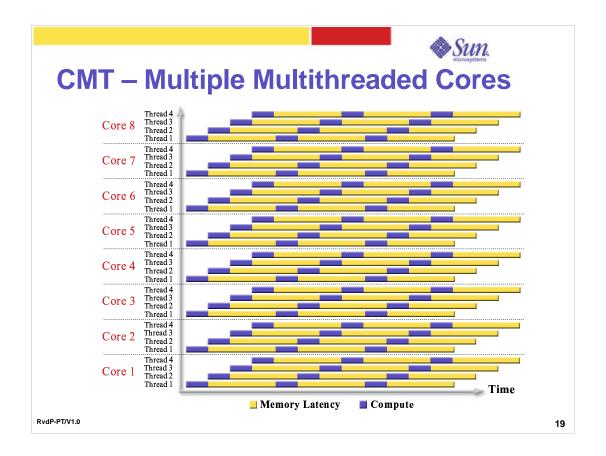
- □ Large caches
- □ Superscalar design to exploit ILP
- □ Out-of-order execution
- □ Very high clock rates
- □ Deep pipelines
- □ Speculative prefetches
- ☐ High power dissipation
- **.....**

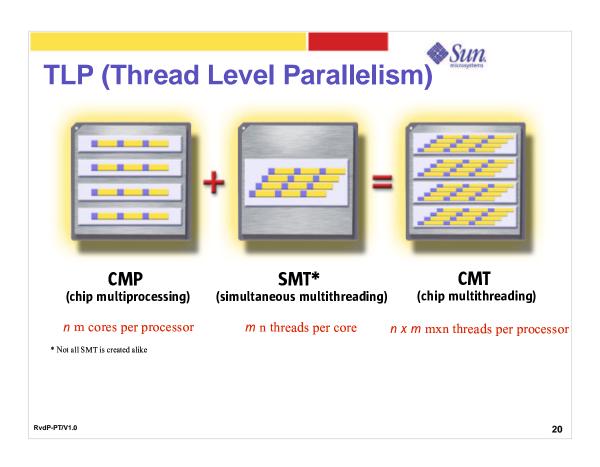

Implications If We Continue Like This

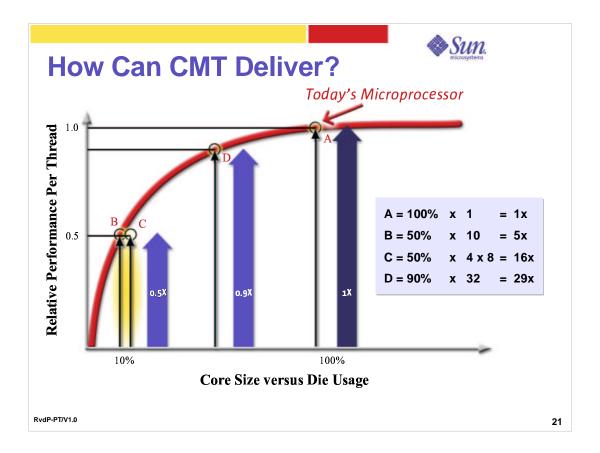
- □ Memory is the BIG bottleneck
 - Large working sets => high cache miss rates
 - Performance dominated by memory stall time
- □ MHz is misleading indicator of performance
 - No need to wait faster
 - Higher MHz is not power efficient
- □ Single thread processors deliver diminishing returns
 - Complexity and power consumption increase much faster than performance


RvdP-PT/V1.0 15

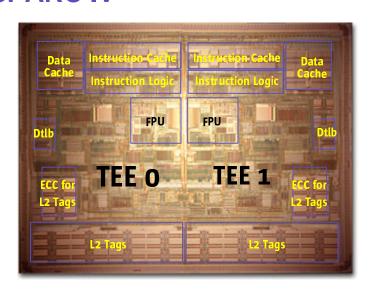

ILP versus TLP






(Instruction Level Parallelism)




UltraSPARC IV Architecture Overview

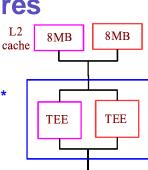
RvdP-PT/V1.0

23

UltraSPARC IV

Sun

US IV - Primary Design Objectives

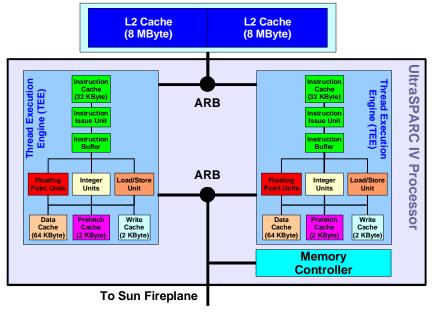

- Improve single thread performance
- □ Double throughput performance
- □ Retain instruction set/binary compatibility
 - All old binaries run unmodified
- Operate within existing systems
 - Board upgrade; not a forklift upgrade
 - Co-habitate chassis with UltraSPARC III Cu
- □ Leverage UltraSPARC III Cu design
 - Lower risk, reduce time-to-market

RvdP-PT/V1.0 25

& Sun. **UltraSPARC IV - Key Features**

- □ 64-bit SPARC V9 ISA + VIS2.0
- □ Dual-thread CMT design
 - UltraSPARC III Cu enhanced TEE's *
- □ TEE's share the interface to L2
 - But the L2 cache is not shared
- □ TEE's share the interface to memory
- □ Higher compute density
 - Benefits workloads that are mostly latency bound and have parallelism that CMT can exploit
- □ Clock rate: 1.05GHz and 1.2GHz (initially).

*) TEE = Thread Execution Engine.



Memory

RvdP-PT/V1.0

UltraSPARC IV - Block Diagram

RvdP-PT/V1.0

27

US IV - Performance Enhancements

- □ Less sub-blocking in L2 cache (E\$)
 - 128B lines with 8MB E\$, 64B lines with 4MB E\$ (per TEE)
 - 64k E\$ tags (per TEE) (4X over US III Cu)
- □ 2-way L2 cache has LRU replacement
 - UltraSPARC III Cu has random replacement
- □ Miscellaneous improvements
 - HW Prefetch and Second Load can be used simultaneously
 - Enhanced FPU: Fewer cases of unfinished fpop traps
 - Hash indexing Write Cache feature
- □ Support for higher CPU frequency
 - New Sun Fireplane clock ratios and L2 cache modes

The PEAS Test Suite

RvdP-PT/V1.0 29

Evaluating The CMT Design

- Indiscriminate resource sharing can impact the benefits of a CMT design
- □ Compared to a corresponding UltraSPARC III Cu based system, each TEE in UltraSPARC IV:
 - Shares the paths to the L2 cache and memory with the other TEE
 - Sees a slight increase in latency to L2 and memory (necessitated by the need for arbitration)
- O To what extent does contention for shared resources limit the benefits targeted by the UltraSPARC IV design?

Systems Used

System	Processor	Speed (MHz)	TEEs	#Boards	Inter connect	Memory (GB)	Solaris
SF 6800	US III Cu	1200	8	2	Fireplane	32	112233-09
SF V440	US IIIi	1280	4	1	JBUS	16	112233-09
SF E6900 (lab system	US IV n)	1200	8	1	Fireplane	32	s10_39 (pre-release)

Note: Performance is not only a function of the processor, the system plays an important role as well

RvdP-PT/V1.0 31

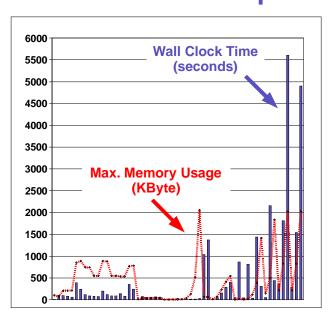
About PEAS

- □ PEAS = Performance Evaluation Application Suite
- Consists of 18 user applications plus kernels derived from real applications
 - Chemistry, Physics and Mathematics
 - Fortran 77, Fortran 90 and C programs
- □ Applications are not aggressively tuned
 - Level of tuning differs per application
 - All applications compiled with -fast (S1S8)
 - ✓ For the C programs some more options were used
 - ✓ Prefetch level selected per application and version
- □ PEAS is meant to represent what our (advanced) users do
 - Or don't do

Contents of PEAS

Name	Characteristic(s)	Versions	Datasets	Total
JOB1	3D FFT	2	1	2
JOB2	Matrix Multiply	3	1	3
JOB3	CFD kernel/FEM	2	1	2
JOB4	CFD kernel/FEM	2	1	2
JOB5	CFD kernel/FEM	2	1	2
JOB6	CFD kernel/FEM	2	1	2
JOB7	CFD kernel/FEM	2	1	2
JOB8	CFD kernel/FEM	2	1	2
JOB9	CFD kernel/FEM	2	1	2
JOB10	CFD kernel/FEM	1	1	1
JOB11	CFD kernel/FEM	3	1	3
JOB12	Chemistry	2	1	2
JOB13	CFD/Finite Difference	1	9	9
JOB14	Chemistry	2	1	2
JOB15	CFD/Multigrid	1	5	5
JOB16	Neural network	2	2	4
JOB17	CFD application	2	3	6
JOB18	Quantum Physics	2	3	6

Total number of runs


57

RvdP-PT/V1.0

33

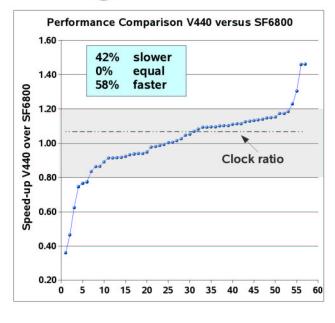
34

PEAS Resource Requirements

- ◆ Some jobs run for a short time and take little memory
- Others run for a short while, but take quite some memory
- Other jobs run long, but don't need much memory
- Others run for a long time and need quite some memory

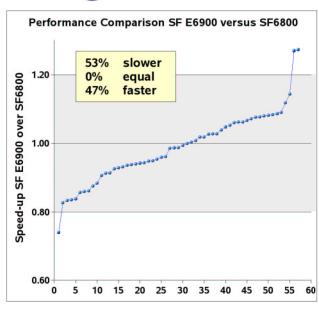
Representing The Results

- □ We are primarily interested in the overall picture
- □ To facilitate interpretation of results, we have sorted them
- □ In our comparison, the Sun Fire 6800 system has been used as the reference system
 - Therefore, the Sun Fire 6800 results were sorted
 - The other results have been adapted accordingly
- □ Please note that as a result of this, in the charts we loose the connection between the JobID and the application
 - <u>In other words, the same JobID on two different graphs may represent a different application</u>


RvdP-PT/V1.0 35

PEAS Single Processor Results

US IIIi @ 1280 versus US III Cu @ 1200


- Results are sorted with respect to the Sun Fire 6800
- ♦ On 27 results (47%) the ratio of the clock cycles is exceeded
- A total of 47 results are in the [0.80, 1.20] range
- ♦ In other words, in 82% of the cases, the two systems perform within +/- 20% of each other

37

RvdP-PT/V1.0

Sun

US IV @ 1200 versus US III Cu @ 1200

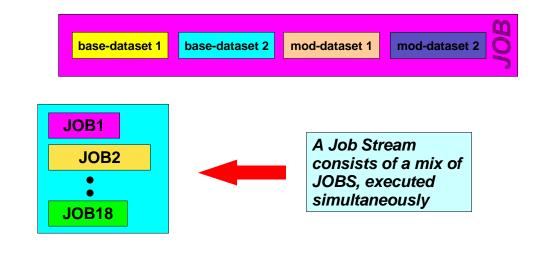
- Results are sorted with respect to the Sun Fire 6800
- In 95% of the cases. the two systems perform within +/-20% of each other

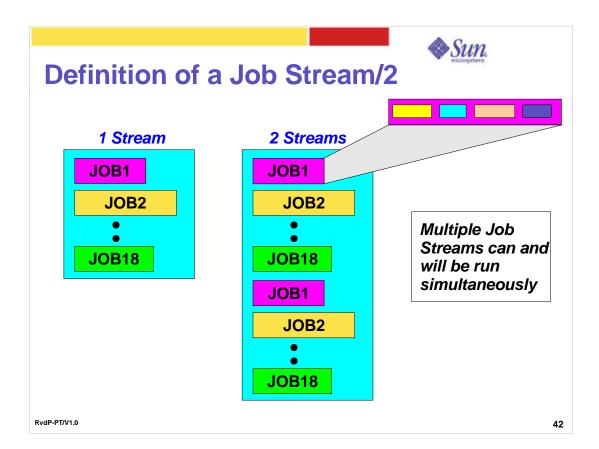
Performance Comparison

- Results are sorted with respect to the Sun Fire E6900
- In 82% of the cases, the two systems perform within +/-20% of each other
- But note the individual differences for the various runs

RvdP-PT/V1.0

39


PEAS Throughput Results


41

Definition of a Job Stream/1*

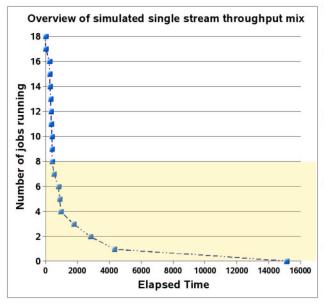
A JOB consists of a series of runs, sequentially running the version(s) of one specific application on the dataset(s):

*) A Stream in this context should not be confused with the STREAMS benchmark!

Comparison Of Measured Versus Simulated Results

RvdP-PT/V1.0 43

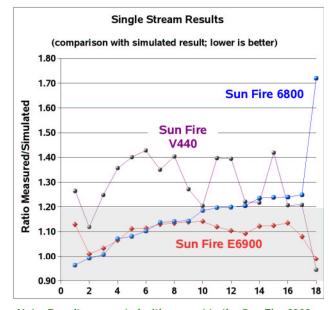
Measured versus Simulated Results


- □ Using the standalone serial wallclock timing, one can simulate the behavior in a throughput environment
 - <u>This assumes ideal conditions and is therefore a simplification</u>
- □ Example (single processor system):

Sequential execution Throughput

100 200 200 300

Example of a simulation

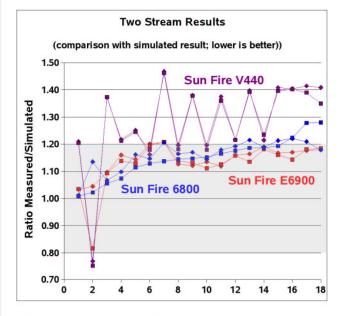


- Simulation is for the Sun Fire 6800
- As can be seen, the run times vary significantly
- Most of the activity is in the early phase of the experiment
- Therefore, the total execution time is not a meaningful metric
- Instead, we will consider the behavior of individual jobs

RvdP-PT/V1.0 45

Sun.

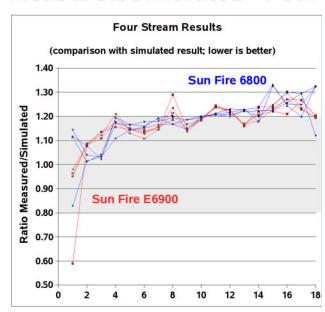
Measured/Simulated - One Stream (8GB)



Note: Results are sorted with respect to the Sun Fire 6800 RvdP-PTIV1.0

- The outlier with ID 18 is the first job that finishes; it runs for a very short time and is heavily impacted by the other jobs that are initiated
- The SF V440 has more difficulty handling the load
- On the SF E6900, 100% of the results are within +/- 20% of the simulated values
- ◆ This is 67% for the Sun Fire 6800

Measured/Simulated - Two Streams (16GB)

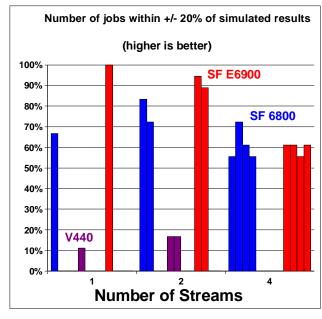

Note: Results are sorted with respect to the Sun Fire 6800 RvdP-PT/V1.0

- ◆ The outlier with ID 2 is the same first job that finishes very early
- ♦ The SF V440 has again more difficulty handling the load
- Note the similarity between the curves for one specific system
- ♦ ~90% of the jobs on the SF E6900 are in the +/- 20% range of the simulated results

47

Sun.

Measured/Simulated - Four Streams (32GB)


- ◆ The outlier with ID 1 is the same first job that finishes very early
- Note the similarity between all the curves
- ♦ ~60% of the jobs on the SF E6900 is in the +/- 20% range of the simulated results

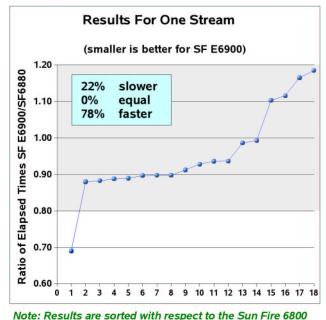
Note: Results are sorted with respect to the Sun Fire 6800

RvdP-PT/V1.0

Summary Simulation Comparison

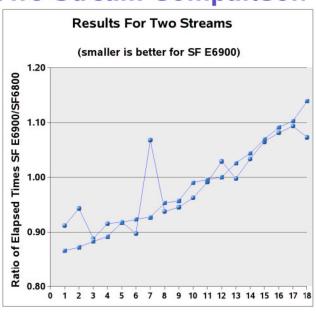
- ◆ The higher the number, the more the system behaves in an "ideal" way
- Note that the SF E6900 is holding up very well compared to the Sun Fire 6800

RvdP-PT/V1.0


49

Sun Fire E6900 versus Sun Fire 6800

Single Stream Comparison

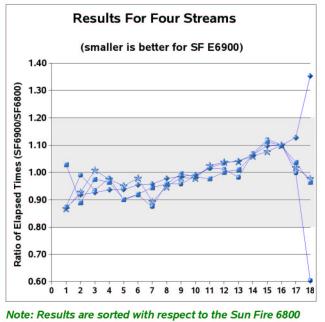


- ♦ For 78% of the jobs, the SF E6900 is faster than the Sun Fire 6800
- A total of 94% jobs is within +/- 20% of the Sun Fire 6800

Note: Results are sorted with respect to the Sun Fire 6800 RvdP-PT/V1.0

51

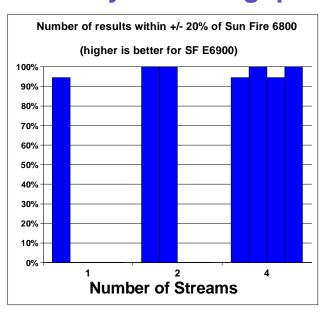
Two Stream Comparison


- Sun.
- ◆ The job with ID 7 is again the first one that finishes and runs for a very short time
- ♦ For approx. 60% of the jobs, the SF E6900 is faster than the Sun Fire 6800
- ♦ For 100% of the jobs, the SF E6900 is within +/- 20% of the Sun Fire 6800

Note: Results are sorted with respect to the Sun Fire 6800

RvdP-PT/V1.0

Four Stream Comparison



- ◆ The job with ID 18 is again the first one that finishes and runs for a very short time
- ◆ For approx. 50%-70% of the jobs, the SF E6900 is faster than the Sun Fire 6800
- ◆ For approx. 94%-100% of the jobs, the SF E6900 is within +/- 20% of the Sun Fire 6800

RvdP-PT/V1.0

53

& Sun. **Summary Of Throughput Results**

- ♦ For over 90% of the jobs tested, the SF E6900 system performs within +/-20% of the Sun Fire 6800
- ♦ This is true for 1, 2 and 4 job streams

Conclusions

RvdP-PT/V1.0

55

Conclusions

- □ We believe that the SF E6900 system with 4 US IV processors running at 1200 MHz performs very well
- □ Parallelizing, tuning, and using the latest compiler and tools are key to getting the most from new systems
- □ PEAS Compared to a SunFire 6800 system with 8 US III Cu processors running at 1200 MHz:
 - Even under a load of 4 streams, 50% of the jobs are faster on the SF E6900 system with 4 US IV processors
 - Even with 4 streams, over 90% of the jobs on the SF E6900 system perform within +/- 20% of the SF 6800 system
- Overall are our results an excellent demonstration of Sun's Throughput Computing strategy

Thank You!

RvdP-PT/V1.0