IRTG Modern Inverse Problems (MIP)

EU Regional School Videos 2019 Part 1

24. Juni 2019 | von

Course 1 – Prof. Dr. Torsten Hoefler – MPI Remote Memory Access Programming and Scientific Benchmarking of Parallel Codes

We will provide an overview of advanced MPI programming techniques. Specifically, we will focus on MPI-3’s new Remote Memory Access (RMA) programming and an implementation thereof. We will discuss how to utilize MPI-3 RMA in modern applications. Furthermore, we will discuss issues in large-scale implementation and deployment. The lecture will then continue to a small number of other advanced MPI usage scenarios that every scientific computing researcher should know. Finally, we will discuss how to benchmark parallel applications in a scientifically rigorous way. This turns out to be surprisingly difficult and the state of the art is suboptimal. We will present twelve simple rules that can be used as guidelines for good scientific practice when it comes to measuring and reporting performance results.

Course 3 – Prof. Alessandro Reali, Ph.D. – Isogeometric Analysis: An Introduction and Some Recent Advances

Isogeometric Analysis (IGA) is a recent simulation framework, originally proposed by T.J.R. Hughes and coworkers in 2005, to bridge the gap between Computational Mechanics and Computer Aided Design (CAD). The basic IGA paradigm consists of adopting the same basis functions used for geometry representations in CAD systems – such as, e.g., Non-Uniform Rational B-Splines (NURBS) – for the approximation of field variables, in an isoparametric fashion. This leads to a cost-saving simplification of the typically expensive mesh generation and refinement processes required by standard finite element analysis. In addition, thanks to the high-regularity properties of its basis functions, IGA has shown a better accuracy per-degree-of-freedom and an enhanced robustness with respect to standard finite elements in a number of applications ranging from solids and structures to fluids, opening also the door to geometrically flexible discretizations of higher-order partial differential equations in primal form, as well as to highly efficient (strong-form) collocation methods.
The first part of this short course is devoted to the introduction of the basic concepts of IGA (including a brief primer on B-Splines and NURBS). The unique potential of IGA is then shown through some convincing applications, mainly belonging to the field of structural mechanics and of fluid-structure interaction, where the superior results that can be provided by IGA with respect to standard finite elements are clearly pointed out. 
The lecture is finally concluded by a brief presentation of further IGA works in progress and new ideas.

Kommentare sind geschlossen.