Kategorien
Seiten
-

IRTG Modern Inverse Problems (MIP)

Karsten Paul, M.Sc.

31. Oktober 2018 | von

Contact

Aachen Institute for Advanced Study
in Computational Engineering Science (AICES)
RWTH Aachen University
Schinkelstr. 2
52062 Aachen

Office: Room 431a
Phone: +49 241 80 99138
Email: paul@aices.rwth-aachen.de

LinkedIn: https://www.linkedin.com/in/karsten-paul-b7b08818b/

XING: https://www.xing.com/profile/Karsten_Paul7/cv

Education

12/2018 – 05/2022: Ph.D. Candidate, IRTG at RWTH Aachen University, Germany

04/2017 – 11/2018: Master of Science in Computational Engineering Science, RWTH Aachen University, Germany

10/2013 – 03/2017: Bachelor of Science in Computational Engineering Science, RWTH Aachen University, Germany

Professional Career

10/2017 – 07/2018: Student Assistant at fka Aachen, Germany

09/2016 – 03/2017: Intern at Volkswagen AG Brunswick, Germany

Theses

  • Phase Field Modeling of Dynamic Brittle Fracture in Thin Shells (Master Thesis, AICES, RWTH Aachen University, Germany 2018)
  • Optimization of Casting Direction as well as Positioning and Dimensioning of Feeders using an Innovative Graph-Based Target Function for the use in a Topology Optimization suitable for Casting (Bachelor Thesis, Volkswagen AG Brunswick, Germany 2017)

Publications

  1. An adaptive space-time phase field formulation for dynamic fracture of brittle shells
    based on LR NURBS
    K. Paul, C. Zimmermann, K.K. Mandadapu, T.J.R. Hughes, C.M. Landis and R.A. Sauer
    Computational Mechanics, 2020, 65, pp. 1039-1062
    doi: 10.1007/s00466-019-01807-y
  2. Isogeometric continuity constraints for multi-patch shells governed by fourth-order
    deformation and phase field models
    K. Paul, C. Zimmermann, T.X. Duong and R.A. Sauer
    Computer Methods in Applied Mechanics and Engineering, 2020, 370, pp. 113219
    doi: 10.1016/j.cma.2020.113219
  3. Dynamic Fracture of Brittle Shells in a Space-Time Adaptive Isogeometric Phase Field
    Framework
    K. Paul, T.J.R. Hughes, C.M. Landis and R.A. Sauer
    CurrentTrendsandOpenProblemsinComputationalMechanics, 2022, pp. 407-415, Springer
    Nature.
  4. An isogeometric finite element formulation for surface and shell viscoelasticity based
    on a multiplicative surface deformation split
    K. Paul and R.A. Sauer
    Preprint, https://arxiv.org/abs/2202.13413

Kommentare sind geschlossen.