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Example: Sudoku revisited
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Parallel Brute-force Sudoku

OpenMP

B This parallel algorithm finds all valid solutions
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B (1) Search an empty fie first call contained in a
#pragma omp parallel

fpragma omp single
such that one tasks starts the
execution of the algorithm

® (2) Try all numbers:
B (2 a) Check Sudoku
® |f invalid: skip

B |f valid: Go to ne; #pragma omp task
field needs to work on a new copy

of the Sudoku board

fpragma omp taskwait

B \Wait for Comp|etion wait for all child tasks



Performance Evaluation OpenMP

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

 Intel C++ 13.1, scatter binding =fi=speedup: Intel C++ 13.1, scatter binding
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Performance Analysis

Event-based profiling provides a : : :
. P 5P Tracing provides more details:
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Every thread is executing ~1.3m tasks... L tion: 0.047 sec
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... in ~5.7 seconds. Tasks get much smaller

=> average duration of a task is ~4.4 us down the call-stack.
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Performance Analysis

Event-based profiling provides a

good overview :
m‘. i Call tree | Flat view i ) | system tree |E] Box <| |
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... in ~5.7 seconds.
=> average duration of a task is ~¥4.4 us
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If you have enough parallelism, stop creating more tasks!!
if-clause, final-clause, mergeable-clause

U T N natlvely in your program code

OpenMP

Tracing provides more details:
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Performance Evaluation (with cutoff)

IIiII

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding
=@=speedup: Intel C++ 13.1, scatter binding

Runtime [sec] for 16x16

Intel C++ 13.1, scatter binding, cutoff

=>¢=speedup: Intel C++ 13.1, scatter binding, cutoff
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#tthreads
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Improving Tasking Performance:
Cutoff clauses and strategies
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The i £ clause OpenMP

B Rule of thumb: the i f (expression) clause as a “switch off” mechanism

- Allows lightweight implementations of task creation and execution but it reduces the parallelism

B If the expression of the if clause evaluates to false

—> the encountering task is suspended int foo(int x) {
printf (“entering foo function\n”);
— the new task is executed immediately (task int res = 0;
#fpragma omp task shared(res) if (false)
dependences are respected!!) {

res += x;
— the encountering task resumes its execution J

printf (“leaving foo function\n”);

once the new task is completed )

. S
S This is known as undeferred task Really useful to debug tasking applications!

B Even if the expression s false, data-sharing clauses are honored
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The £inal clause OpenMP

B The final (expression) clause
- Nested tasks / recursive applications

—> allows to avoid future task creation - reduces overhead but also reduces parallelism

B |f the expression of the final clause evaluates to true

- The new task is created and executed normally but in its context all tasks will be executed immediately

by the same thread (included tasks)
e == false e == true
#fpragma omp task final (e) - -

{ ,’: o"
#pragma omp task ..*' ".‘
e b 4 L r:----' ————— I
fpragma omp task :Code_B; i
{ #C.l,’ #C.Z } =Code_C; :
fpragma omp taskwalt ot | code_ci; :
} S, | code_c2; I
OC
M Data-sharing clauses are honored too! O
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The mergeable clause OpenMP

B The mergeable clause
— Optimization: get rid of “data-sharing clauses are honored”

—> This optimization can only be applied in undeferred or included tasks

B A Task that is annotated with the mergeable clause is called a mergeable task

- Atask that may be a merged task if it is an undeferred task or an included task

B A merged task is:

- Atask for which the data environment (inclusive of ICVs) may be the same as that of

its generating task region

B A good implementation could execute a merged task without adding any OpenMP-

related overhead Unfortunately, there are no OpenMP

commercial implementations taking
o advantage of final neither mergeable =(
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