OpenMP

Programming OpenMP

Cut-off strategies

Christian Terboven RWIH

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

OpenMP

Example: Sudoku revisited

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Parallel Brute-force Sudoku

OpenMP

B This parallel algorithm finds all valid solutions

6 8|11 15|14 16
15|11 16(14 12 6
13 9|12 3|16|14| |15(11[10
2| |16 |11 [15]10] 1
15|11|10 16| 2|13| 8| 9|12
12|13 4 1| 5| 6] 2| 3 11(10
9] 6| 1112 91 |15|11|10] 7|16 3
2 10 [(11] 6 S 13 9
10| 7|15(11]|16 12|13 6
9 1 2| |16]10 11
1 4] 6] 9|13 71 11 3|16
16|14 7| |10|15] 4| 6| 1 13| 8
11110 |15 16| 9|12|13 1 5| 4
12 11 4| 6| |16 11110
9) 8(12|13] |10 11| 2 14
3|16 10 7 6 12

Programming in OpenMP

Christian Terboven & Members of the OpenMP Language Committee

B (1) Search an empty fie first call contained in a
#pragma omp parallel

fpragma omp single
such that one tasks starts the
execution of the algorithm

® (2) Try all numbers:
B (2 a) Check Sudoku
® |f invalid: skip

B |f valid: Go to ne; #pragma omp task
field needs to work on a new copy

of the Sudoku board

fpragma omp taskwait

B \Wait for Comp|etion wait for all child tasks

Performance Evaluation OpenMP

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

 Intel C++ 13.1, scatter binding =fi=speedup: Intel C++ 13.1, scatter binding

8 - 4.0
—u
- 35

7 R
(Vo)
© 6 - 3.0
x
3
. 5 - 25
e S
o 4 20 ©
v, (]
v &
£ 3 - 15
)
S
o) - 1.0

1 I - 0.5

0 - 0.0

5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#threads

1 2 3 4

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

OpenMP

Performance Analysis

Event-based profiling provides a : : :
. P 5P Tracing provides more details:
gOOd OverVIeW : 6.80 s 6?55 6?05 6?55 7.();05 70;5 7.1205 7‘1;55

oo, amn Master thread :
E Metric tree E Call tree { Flat view ‘ H System tree ‘ Box ¢ |> W 15omp parallel @sudoku.cpp:174
[5.088038e7 Visits ([| | GF (7 0 task_root J - | B - machine Linux 861 EasKkWait @SUdORY Cpp:
103.547101 Time (/| B} [1.077944e7 l$omp tas | EF [- node cluster-phi.rz.F '"
[] 0.000000 Minimum [1.077944e7 1$omp EF [] - Process
7.185572 Maximun [1.077336e7 1$omp - [1.357093e6 M
127.000000 max a 80 I$omp atemic @ - [1.359940e6 O
80 lfomp atomic @sudok - 1.316294e6 O
. [0 1.854197e7 I$omp paralle| | - [1.289513e6 O
17 1$omp parallel @sudok | - 1.318732e6 O
[1.384539e6 O
- [1.384848e6 O
L [1.368480e6 O

vl 6

O WoONOULUEWN

e v

=

Duration: 0.16 sec

6.805 6855 6905 6955

7.00s 7055 7105 7.15s

Master thread :

IVl 12 = > :

Every thread is executing ~1.3m tasks... L tion: 0.047 sec
ﬁ‘ B calltree { Flat view ‘ = system tree ‘. Nl SRo: Se5s G0 s TG0

5.088038e7 Visits [} [] 0.000000 task_root EF [] - machine Linux :
Huq H -IF-F rwu

103.547101 Time (| 46.229420 I$omp task | & [- node cluster-phi.rz.f| .
[0.000000 Minimum 0.000051 Ifomp atomic @ & [- Process vl 48 4 _I_II
50 r

7.185572 Maximumn 57.317553 lfomp parallel - [5.787572 Mast
127.000000 max a 0.000076 !$omp parallel @ - [5.767037 OMF

- [5.770846 OMF
__] g

- [5.793451 OMF
- [5.794502 OMF

... in ~5.7 seconds. Tasks get much smaller

=> average duration of a task is ~4.4 us down the call-stack.

7.10s

Timeline
7.05s

Master thread

Master thread
79 glml ﬂlmw e —]
0 |

IR
ol

] [

III'II |II”!|' \'\['Illl'!'H'Hl IIIIII [‘

81 | | 1L
vl 82 = o T

- [5.775753 OMF
[5.770343 OMF
- [5.769917 OMF

82

T N Duration: 2.2 ps

e

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Performance Analysis

Event-based profiling provides a

good overview :
m‘. i Call tree | Flat view i) | system tree |E] Box <| |

5.088038e7 Visits (|| | &t [] 0 task_root | | & 0O - machine Linux
103.547101 Time (|| I [1.077944e7 l$omp tas | B [- node cluster-phi.]
[] 0.000000 Minimum [1.077944e7 1$omp EF [] - Process

7.165572 Maximun [1.077936e7 I$omp [1.357093e6 M
127.000000 max a 80 I$omp atemic [0 1.350940e6 O

80 lfomp atomic @sudok
_ [0 1.854197e7 I$omp paralle| |
17 1fomp parallel @sudok |

[1.316204e6 Of |
[0 1.289513e6 Of |~
[0 1.318732e6 O

ks

Every thread i ®

5.088038e7 Visits (-] | &F [J 0. 000000 task_root -] "Ef T - machine Linux ;_
103.547101 Time (| & [46.229420 I$omp task | | & [- node cluster-phi.rz.f| |
[] 0.000000 Minimum 0.000051 lfomp atomic @ EF [- Process

7.185572 Maximumn 57.317553 lfomp parallel - [5.787572 Mast
127.000000 max a 0.000076 !$omp parallel @ - [5.767037 OMF

- [5.770846 OMF
[5.793451 OMF
- [5.794502 OMF
- [5.775753 OMF
[5.770343 OMF
- [5.769917 OMF

FILILE

S
itk

... in ~5.7 seconds.
=> average duration of a task is ~¥4.4 us

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

If you have enough parallelism, stop creating more tasks!!
if-clause, final-clause, mergeable-clause

U T N natlvely in your program code

OpenMP

Tracing provides more details:

6.80s 6.855 6.90s 6.955 7.00's 7.05s 7.10s 7.15s

Master thread

lsomp parallel @sudoku cpp:174

vl 6

O WoONOULUEWN

=

o Duration: 0.16 sec

7.05s 7.10s 7.15s

%

7 sec

v o i o iy i ,.v_.‘s 7055 7.10s s 155

Master thread

‘ : _' H -IF-F FW!IWI—
vl 48 a8 _ [— e
: il

B Duratlon O 001 sec -

Master thread
79 i|Wmm 1 N N ll’ L] — u ‘WF mi [|

mn I
wvigy = M W 1”“!5!”'*\'*11 IW | limw 0

2| e
y Duratlon 2.2 us
Tasks get much smaller

down the call-stack.

-

Performance Evaluation (with cutoff)

IIiII

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding
=@=speedup: Intel C++ 13.1, scatter binding

Runtime [sec] for 16x16

Intel C++ 13.1, scatter binding, cutoff

=>¢=speedup: Intel C++ 13.1, scatter binding, cutoff

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

#tthreads

18

16

Speedup

OpenMP

OpenMP

Improving Tasking Performance:
Cutoff clauses and strategies

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

The i £ clause OpenMP

B Rule of thumb: the i f (expression) clause as a “switch off” mechanism

- Allows lightweight implementations of task creation and execution but it reduces the parallelism

B If the expression of the if clause evaluates to false

—> the encountering task is suspended int foo(int x) {
printf (“entering foo function\n”);
— the new task is executed immediately (task int res = 0;
#fpragma omp task shared(res) if (false)
dependences are respected!!) {

res += x;
— the encountering task resumes its execution J

printf (“leaving foo function\n”);

once the new task is completed)

. S
S This is known as undeferred task Really useful to debug tasking applications!

B Even if the expression s false, data-sharing clauses are honored

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

The £inal clause OpenMP

B The final (expression) clause
- Nested tasks / recursive applications

—> allows to avoid future task creation - reduces overhead but also reduces parallelism

B |f the expression of the final clause evaluates to true

- The new task is created and executed normally but in its context all tasks will be executed immediately

by the same thread (included tasks)
e == false e == true
#fpragma omp task final (e) - -

{ ,’: o"
#pragma omp task ..*' ".‘
e b 4 L r:----' ————— I
fpragma omp task :Code_B; i
{ #C.l,’ #C.Z } =Code_C; :
fpragma omp taskwalt ot | code_ci; :
} S, | code_c2; I
OC
M Data-sharing clauses are honored too! O

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

The mergeable clause OpenMP

B The mergeable clause
— Optimization: get rid of “data-sharing clauses are honored”

—> This optimization can only be applied in undeferred or included tasks

B A Task that is annotated with the mergeable clause is called a mergeable task

- Atask that may be a merged task if it is an undeferred task or an included task

B A merged task is:

- Atask for which the data environment (inclusive of ICVs) may be the same as that of

its generating task region

B A good implementation could execute a merged task without adding any OpenMP-

related overhead Unfortunately, there are no OpenMP

commercial implementations taking
o advantage of final neither mergeable =(
Programming in OpenMP

Christian Terboven & Members of the OpenMP Language Committee

