
PPCES 2021: MPI Lab
Marc-André Hermanns, hermanns@itc.rwth-aachen.de

Acknoledgements:

Parts of these code example have been developed by:

Christian Iwainsky
Sandra Wienke
Hristo Iliev
Joachim Protze

Synopsis

The purpose of this hands-on lab is to make you familiar with the basic concepts of MPI. Tasks 1–
3 will introduce you to the principles of basic point-to-point communication. Task 4 will practice
the concept and usage of collective communications and MPI in general.

Building and executing lab examples

Building

The lab examples are written in C and require a C99 compiler. To ensure the C99 support, the
CFLAGS in common/make.def specify the flag -std=c99 , which switches on the C99 language
support for most compilers. You may need to adapt this to the compiler used on your system.

MPI uses compiler wrappers to take care of all MPI-related command-line arguments for the
preprocessor, compiler, and linker. The names for these wrappers is not standardized, yet mpicc
is a common name for the C compiler wrapper. Therefore, this is the default compiler for the lab
examples.

On most systems, you should be able to build an example with just

Yet, you can override the compiler wrapper used by specifying it directly with the
make command. The following example chooses the Intel Compiler with the Intel MPI library.

Executing

MPI does not specify a specific launch command to be used to launch an MPI application,
however, many MPI libraries provide the command mpiexec . If you are on a local system (like
your laptop), this command will likely allow you to start the MPI application. On HPC platforms
however, execution of parallel application may be performed by a different launch command,
and an existing mpiexec in the path may not work as desired. Always consult your local HPC
platform documentation for the details on launching MPI applications.

% make

% make MPICC=mpiicc

af://n383
mailto:hermanns@itc.rwth-aachen.de
af://n385
af://n386
af://n397
af://n399
af://n400
af://n407

The CLAIX system at RWTH Aachen University defines environment variables for the convenience
of the user. For the sake of these lab exercises, the following command on the cluster frontends
will launch your MPI application on a shared partition.

Note: The \ followed by a line break allows to spread a single command across multiple lines. It is
used here for the sole purpose of clarity, and is not needed if all your command line arguments are on
a single line.

All exercises contain a special make target that will launch you program with an appropriate
number of MPI processes.

1. Hello, MPI!

Lecture Sessions: MPI Overview, MPI Concepts

The purpose of this exercise is to get you familiar with the very basics of MPI programming. Start
with the minimal program hello.(c|f90) in directory 1_helloMPI and insert the appropriate
code at the TODO markers.

2. Ping Pong

Lecture Sessions: Blocking Point-to-Point Communication

One basic MPI program using point-to-point communication is the “ping pong” between two MPI
processes. A ping-pong program skeleton can be found in directory 2_pingPong. Complete the
source code parts marked with “TODO”.

a) Make the first process of the MPI program transmit its input to the second process. The
second process should then print the received value and send it back with an opposite sign to the
first process, which should again print the received value.

b) Make each rank send an individually and randomly selected number of elements. Let the other
process know in advance the size of the array by explicitly sending it as an additional message.

c) What is the behaviour of the program for NPROCS=1 and NPROCS>2 ? Modify it to display an
error message when started with too few processes and to execute properly with more than two
processes.

d) Implement part b) of the assignment without explicitly sending the number of elements.

e) Bonus task: Implement a loop to send/receive messages with different sizes. How does the
message size influence the time being spent in MPI functions? You may use MPI_Wtime() to

measure wall-clock time and go with array size as high as 226 elements to make the impact of the
data size clearly visible.

3. Send-Receive

Lecture Sessions: Blocking/Non-blocking Point-to-Point Communication

% ${MPIEXEC} -np <numberOfProcesses> \

 <application> <application_args>

% make run

af://n414
af://n415
af://n417
af://n418
af://n425
af://n426

When multiple MPI processes exchange messages concurrently using blocking communication,
the application may run into a deadlock if the communication pattern is not properly
implemented. Use the code example 3_sendReceive/send_receive.(c|f90) and identify why
this application runs into a deadlock. Use different techniques to overcome this problem.

(Note: You can abort the program execution when running interactively using Ctrl-c .)

a) Modify the original code to use MPI_Send() and MPI_Recv() such that it becomes a correct
MPI program and completes execution.

b) Modify the original code to use MPI_Sendrecv() or MPI_Sendrecv_replace to avoid the
deadlock.

c) Modify the original code to use non-blocking communication on one of the point-to-point
communication calls to avoid the deadlock.

d) Modify the original code to use non-blocking communication on both of the point-to-point
communication calls to avoid the deadlock.

e) Modify the code from d) to work with more than 2 MPI processes. In this case the messages
should be exchanged between adjacent ranks.
(Hint: Will a special treatment be needed for the last rank?)

4. Simple Collectives

Lecture Sessions: Blocking Collective Communication

MPI collective operations describe common communication patterns among multiple processes.
Implement the collectives bcast_int , scatter_int , gather_int , alltoall_int , and
reduce_sum_int present in the skeleton file 4_simpleCollectives/collectives.c . Note that
these collectives are simplified to work on integer buffers.

The skeleton file already contains printf statements to help you verify the correctness of your
implementation. You can provide the rank in MPI_COMM_WORLD of the process that should
perform the print statements. To test your implementation execute the application with different
arguments.

Here is an example for testing with four ranks:

5. Creating new communicators

Lecture Sessions: Derived Datatypes

Create new communicators as described in the subtask

a) Create a duplicate of MPI_COMM_WORLD using MPI_Comm_dup and query the processes' rank
and size for this communicator in dupRank and dupSize , respectively.

b) Split MPI_COMM_WORLD such that the resulting communicators hold the MPI processes with
odd and even ranks in MPI_COMM_WORLD , respectively. Query the processes' rank and size for this
communicator in oddevenRank and oddevenSize , respectively.

% make run NPROCS=4 # rank 0 is default

% make run NPROCS=4 PROG_ARGS=1 # select rank 1 to output

% make run NPROCS=4 PROG_ARGS=2 # select rank 2 to output

% make run NPROCS=4 PROG_ARGS=3 # select rank 3 to output

af://n434
af://n435
af://n440
af://n441

c) Split MPI_COMM_WORLD such that the resulting communicators hold the MPI processes with the
ranks in MPI_COMM_WORLD below have of the size of MPI_COMM_WORLD and equal and above,
respectively. Reorder the ranks such that the lowest rank in MPI_COMM_WORLD has the highest
rank in the resulting communicator. Query the processes' rank and size for this communicator in
upperlowerRank and upperlowerSize , respectively.

6. Derived Datatypes

Messages can be exchanged with different datatype handles on sender and receiver side, if the
respective type signature of the buffers at sender and receiver-side matches.

a) Extend the skeleton file 6_datatypes/derived.c and create datatypes on the sender and
receiver side to transpose a 10 x 10 matrix in flight, by reading the data column-wise (use
MPI_Type_vector) on the sender side and receiving row-wise (use MPI_Type_contiguous) on
the receiver side.
(*Hint: It is easiest to send separate messages for each column of data)

b) Extend your solution for (a) and create a full matrix type to be able to send the data with a
single message. Use a MPI_Type_create_hindexed (which is similar to MPI_Type_indexed , but
uses byte displacements) to combine several columns of data into a single message. Think about
why you cannot use MPI_Type_indexed for this easily.

af://n446

	PPCES 2021: MPI Lab
	Marc-André Hermanns, hermanns@itc.rwth-aachen.de
	Acknoledgements:
	Synopsis
	Building and executing lab examples
	Building
	Executing
	1. Hello, MPI!
	Lecture Sessions: MPI Overview, MPI Concepts
	2. Ping Pong
	Lecture Sessions: Blocking Point-to-Point Communication
	3. Send-Receive
	Lecture Sessions: Blocking/Non-blocking Point-to-Point Communication
	4. Simple Collectives
	Lecture Sessions: Blocking Collective Communication
	5. Creating new communicators
	Lecture Sessions: Derived Datatypes
	6. Derived Datatypes

