

Storage Strategy for HPC Users

Philipp Martin

Agenda

- I/O in HPC
 - Parallel Filesystems
 - Striping
- RWTH File Systems: Overview
 - Architecture: Big Picture
 - SHOME & SWORK
 - \$HPCWORK
 - \$BEEOND
- RWTH File Systems: Best Practices
 - Usage Guidelines

I/O in HPC

Storage Parameters

- Performance
 - Bandwidth [GB/s]: How quickly can I move raw bytes?
 - Metadata [IOPS]: How quickly can I perform file operations?

I/O in HPC

Storage Parameters

- Performance
 - Bandwidth [GB/s]: How quickly can I move raw bytes?
 - Metadata [IOPS]: How quickly can I perform file operations?
- Reliability
 - Uptime: How often is the system unreachable?
 - Snapshots: Protection against accidental deletion
 - Backups: Protection against system failures

I/O in HPC

Storage Parameters

- Performance
 - Bandwidth [GB/s]: How quickly can I move raw bytes?
 - Metadata [IOPS]: How quickly can I perform file operations?
- Reliability
 - Uptime: How often is the system unreachable?
 - Snapshots: Protection against accidental deletion
 - Backups: Protection against system failures
- Capacity
 - Total size in bytes
 - Total number of files

Parallel Filesystems

Taken from: https://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf

Striping

Striping

Striping

Agenda

- · I/O in HPC
 - Parallel Filesystems
 - Striping
- RWTH File Systems: Overview
 - Architecture: Big Picture
 - SHOME & SWORK
 - + SHPCWORK
 - SBEEOND
- RWTH File Systems: Best Practices
 - Usage Guidelines

Big Picture

Overview - File System Summary

Access	File System	Cap. Quota	File Quota	Backup	Pros	Cons
\$HOME	NFS	100 GB	-	Tape (off-site)	- reliable - backup	- limited bw. - limited quota
\$WORK	NFS	250 GB	-	Snapshots	- reliable	- limited bw.
\$HPCWORK	Lustre	1000 GB	50 000	None	bandwidthcapacity	- less reliable
\$BEEOND	BeeGFS	-	-	None	metadatabandwidth	temporarymemory usage

Overview - IO500 Benchmark Results

\$HOME & \$WORK

- Use NFS over Ethernet
- Limited bandwidth, but very reliable
- \$HOME is backed up to tape
 - \$HOME should be used for configuration files and data that cannot be recovered otherwise
 - + \$WORK should be used for applications that are light on I/O

\$HPCWORK

- Lustre parallel file system
- Access with RDMA network (Intel Omnipath)
- · High bandwidth, but limited metadata performance
- Not optimized for reliability
 - Use for applications that use few large files

\$BEEOND

- File system that uses the local SSDs of the compute nodes
- · Is **temporary**, i.e. any data that hasn't been copied somewhere else is lost when the job ends
 - Request via #SBATCH --beeond
 - Staging currently in progress, likely to be rolled out by end of March

\$BEEOND

- File system that uses the local SSDs of the compute nodes
- Is **temporary**, i.e. any data that hasn't been copied somewhere else is lost when the job ends
 - Request via #SBATCH --beeond
 - Staging currently in progress, likely to be rolled out by end of March
- Use for applications that use many small files
- Use for jobs that use a moderate number of nodes (< 50)

Agenda

- · I/O in HPC
 - Parallel Filesystems
 - Striping
- RWTH File Systems: Overview
 - Architecture: Big Picture
 - \$HOME & \$WORK
 - + SHPCWORK
 - \$BEEOND
- RWTH File Systems: Best Practices
 - Usage Guidelines

- Use \$HOME to store important data or results, not for computation
 - Limited performance and space
 - Backups (are costly)
 - We have to enforce 100 GB quotas

- Use \$HOME to store important data or results, not for computation
 - Limited performance and space
 - Backups (are costly)
 - We have to enforce 100 GB quotas
- If possible, evaluate \$BEEOND
 - Decent bandwidth and good metadata performance
 - Warning: temporary (per job) storage!

- Use \$HOME to store important data or results, not for computation
 - Limited performance and space
 - Backups (are costly)
 - We have to enforce 100 GB quotas
- If possible, evaluate \$BEEOND
 - Decent bandwidth and good metadata performance
 - Warning: temporary (per job) storage!
- When in doubt, use \$WORK or \$HPCWORK
 - Simple to use
 - \$WORK: supports large number of small files
 - \$HPCWORK: good bandwidth performance

- Use \$HOME to store important data or results, not for computation
 - Limited performance and space
 - Backups (are costly)
 - We have to enforce 100 GB quotas
- If possible, evaluate \$BEEOND
 - Decent bandwidth and good metadata performance
 - Warning: temporary (per job) storage!
- When in doubt, use \$WORK or \$HPCWORK
 - Simple to use
 - \$WORK: supports large number of small files
 - \$HPCWORK: good bandwidth performance
- Use data transfer nodes for transferring large amounts of data
 - {copy,copy18-1,copy18-2}.hpc.itc.rwth-aachen.de

Questions

Questions?

Backup

Backup

Overview - IO500 Benchmark Results

- The IO500 is a benchmark designed to test the I/O capabilities of High-Performance Computing systems
- It uses several different scenarios to test both best and worst cases for bandwidth and metadata performance
- The results are averaged geometrically

Benchmarks

Parameters

- Isilon (\$WORK, \$HOME)
 - 15 Nodes
 - Each: 35 HDDs (3 TB, 7200 RPM, SATA) and 1 SSD (1.6 TB, SATA)
 - Total: 1.1 PB Net Capacity, 4 GB/s aggregate bandwidth
- Lustre (\$HPCWORK)
 - 10 Units
 - Each: 180 HDDs (8 TB, 7200 RPM, SATA)
 - Total: 9.9 PB Capacity, 150 GB/s aggregate bandwidth
- Local disks (\$BEEOND)
 - Per compute node: 1 SSD (480 GB, SATA)

CLAIX 16

- Lustre-16
 - 3 PB Capacity, 50 GB/s aggregate write bandwidth, 35 GB/s aggregate read bandwidth

