井 HPC.NRW

HPC Architecture Basics and RWTH Resources

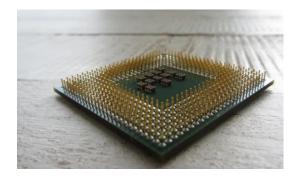
What is a supercomputer?

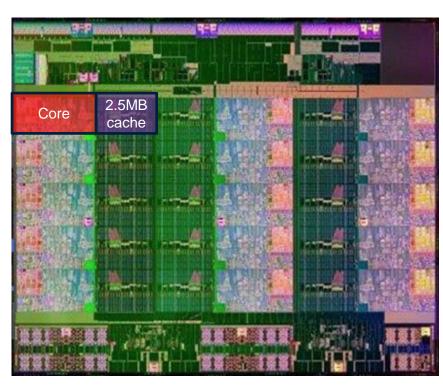
Tim Cramer

Levels of parallelism in hardware

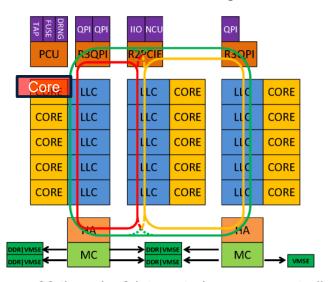
- A modern supercomputer may contain multiple levels of parallelism
 - Processor level parallelism: Superscalar, SIMD
 - Node/Chip level: Several cores/processors run in parallel with access to the same memory
 - System level: Several nodes run in parallel and are communicating over a network interconnect

- Parallelism introduces overhead
 - Additional computational costs (cycles)
 - Implementation (hours of work)
- Overhead increases from processor to system level





What is a core?



Processor Block Diagram

• 15 cores, 30 threads, 2 integrated memory controllers

© 2014 IEEE International Solid-State Circuits Conference

5.4: Ivytown: A 22nm 15-core Enterprise Xeon® Processor Family

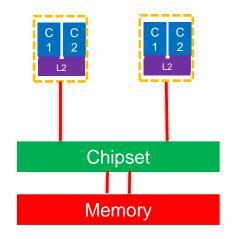
6 of 41

Processor Level Parallelism

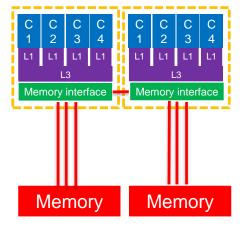
- Parallelism at processor/ instruction level
 - Pipelining (overlap in execution: load, decode, execute)
 - Superscalar (redundant arithmetical units: Multiplication, Addition, ...)
 - SIMD execution (e.g. 512 bit registers, AVX-512)

- Programming techniques
 - Code modifications: Unrolling, Cache reuse
 - Compiler optimizations

What is a Node in a Cluster?



Node in a Cluster

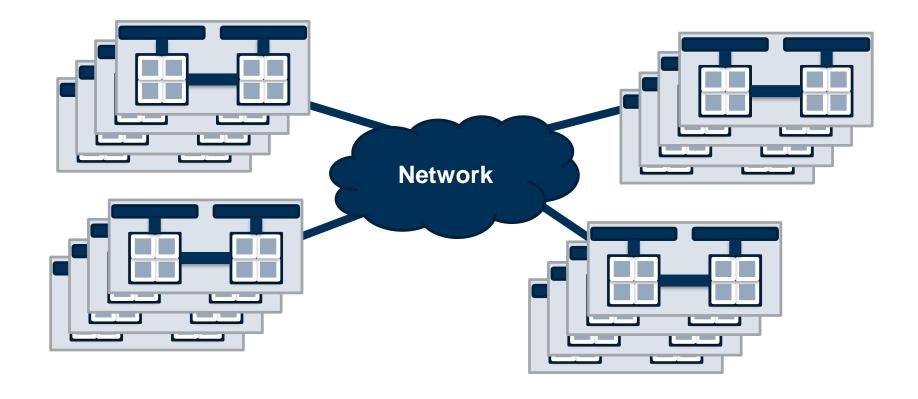


- A node may contain
 - One or more (multi-core) processors
 - Memory hierarchy (caches, disks, etc.)
 - Interconnects, power supply, fans, ...
 - Accelerators
- Multicore Designs
 - Early multicore design
 - Uniform Memory Architecture (UMA)
 - Flat Memory design
 - Recent multicore design
 - ccNUMA (Cache Coherent Non-Uniform Memory Architecture)
 - Memory Interface + HT/QPI provides inter-socket connectivity

UMA

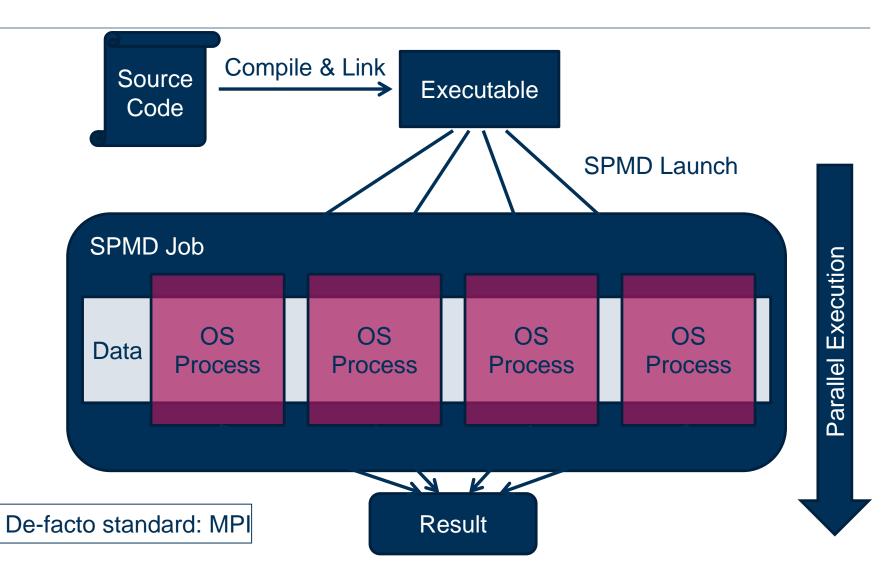
NUMA

What is a Cluster?


HPC Cluster

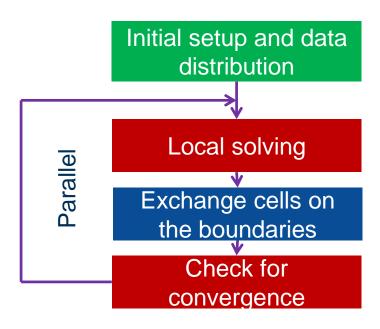
HPC Architecture Basics and RWTH Resources | Tim Cramer

- HPC market is dominated by distributed memory multicomputers (clusters)
- Many nodes with no direct access to other nodes' memory


How to execute a program on the complete cluster?

SPMD:

Single Program Multiple Data

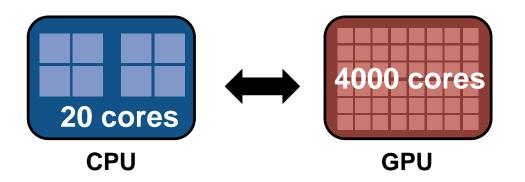


System Level Parallelism

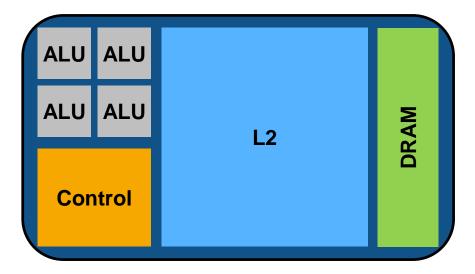
Example: Domain decomposition in CFD: Mapping of 3D mesh to the processors

- Programming techniques
 - Data parallel approach
 - Distribute data structures
 - Parallel algorithms
 - Explicit data exchange (MPI)

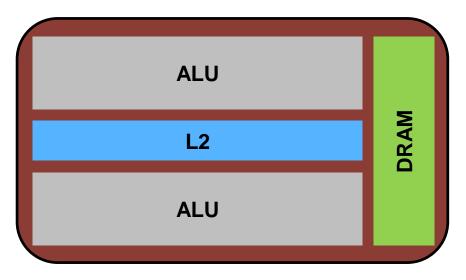
What is an Accelerator in a Node?



- GPU-Threads
 - Thousands ("few" on CPU)
 - Light-weight, little creation overhead
 - Fast switching
- Lots of parallelism needed on GPU to get good performance!



CPU vs. GPU



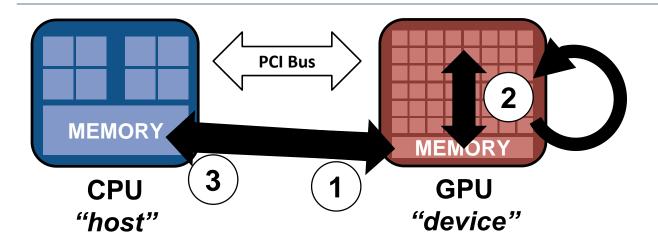
Different design

CPU

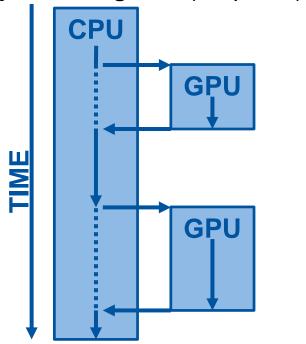
- → Optimized for low latencies
- → Huge caches
- → Control logic for out-of-order and speculative execution
- → Targets on general-purpose applications

GPU

- → Optimized for data-parallel throughput
- → Architecture tolerant of memory latency
- → More transistors dedicated to computation
- → Suited for special kind of apps



Offloading



We refer to "discrete GPUs" here.

- Weak memory model
 - Host + device memory = separate entities
 - No coherence between host + device
 - Data transfers needed
- Host-directed execution model
 - Copy input data from CPU mem. to device mem.
 - Execute the device program
 - Copy results from device mem. to CPU mem.

processing flow (simplified)

HPC Resources @ RWTH Aachen University

	CLAIX-2016	CLAIX-2018 (Tier-2 + Tier-3)
Peak Perform. Hosts + GPUs (avail. resources)	0.56 + 0.13 PFlops (125 Mio Coreh)	2.3 + 0.7 PFlops (400 Mio Coreh + 80 Mio Coreh)
MPI Nodes	609 MPI nodes 2-socket Intel Broadwell processors (E5-2695v4, 2x12 cores, 128 GB, 2.2 GHz)	1032 + 216 MPI nodes 2-socket Intel Skylake processors (Platinum 8160, 2x24 cores, 192 GB, 2.1 GHz)
	8 additional nodes with 2 TB NVMe additional dialog and service nodes	additional dialog and service nodes
SMP Nodes	8 SMP nodes 8-socket Intel Broadwell processors (E7-8860v4, 8x18 cores, 1024 GB, 2.2 GHz)	-
GPU Nodes	10 GPU nodes 2-socket Intel Broadwell processors (E5-2695v4, 2x12 cores, 128 GB, 2.2 GHz) 2 NVIDIA P100 GPUs (16 GB)	48 + 6 GPU nodes 2-socket Intel Skylake processors (Platinum 8160, 2x24 cores, 192 GB, 2.1 GHz) 2 NVIDIA Tesla V100 GPUs (16 GB HBM2)
Fabric	Intel OmniPath network (OPA) 1:2 blocking, 16X PCIgen3	Intel OmniPath network (OPA) 1:2 blocking, 16X PCIgen3
Storage	3 PB Lustre Storage 1.3 PB Home Storage (EMC2 Isilon)	10 PB Lustre Storage BEEOND on SSDs (480 GB)

HPC Resources @ RWTH Aachen University

	CLAIX-2016	CLAIX-2018 (Tier-2 + Tier-3)
Peak Perform. Hosts + GPUs (avail. resources)	0.56 + 0.13 PFlops (125 Mio Coreh)	2.3 + 0.7 PFlops (400 Mio Coreh + 80 Mio Coreh)
MPI Nodes	609 MRI nodes 2-socket Intel Broadwell (E5-2695v4, 2x12 cores, 12) 8 additional nodes additional dialog	1032 + 216 MPI nodes 2-socket Intel Skylake processors (Platinum 8160, 2x24 cores, 192 GB, 2.1 GHz) additional dialog and service nodes
SMP Nodes	8 SMP node 8-socket In (E7-8860) (E7-8860) (E7-8860)	-
GPU Nodes	2-sr Sroadwell processors (F 2 cores, 128 GB, 2.2 GHz)	48 + 6 GPU nodes 2-socket Intel Skylake processors (Platinum 8160, 2x24 cores, 192 GB, 2.1 GHz) 2 NVIDIA Tesla V100 GPUs (16 GB HBM2)
Fabric	nniPath network (OPA) 1:2 scking, 16X PClgen3	Intel OmniPath network (OPA) 1:2 blocking, 16X PCIgen3
Storage	3 PB Lustre Storage 1.3 PB Home Storage (EMC2 Isilon)	10 PB Lustre Storage BEEOND on SSDs (480 GB)

Conclusion

Questions?

