
Performance Metrics & Measurements

Daniel Schürhoff

IT Center, RWTH Aachen University

HPC Intro, 04.03.2022

Performance Metrics

2

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Runtime

• HPC is about reducing the runtime of an application*

1. Serial performance tuning

2. Parallel performance tuning

• Time metrics

 Wallclock time: elapsed real time (such as a clock on the wall)

 CPU time: accumulated time of

all CPUs (cores) executing the

application (instructions)

 Derived core-h: program run

of 1 hour on 4 cores = 4 core-h

• Remarks

 Complete application time

 Kernel time

• Getting the runtime

 Timers in code, or tools

3

0

500

1,000

1,500

2,000

2,500

3,000

3,500

0 4 8 12 16 20 24 28 32 36 40 44 48

ru
n
ti
m

e
 [

s
]

#processes

Lower is better

*and/or enabling the simulation of big(ger) data sets see weak scaling

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Floating-Point Operations per Second

• Floating-point operations per second: Flop/s

 Double precision

 Single precision

 Half precision

• Remarks

 Typical for algorithm

 Avoid „Macho-Flop/s“

• Getting Flop/s

 Runtime measurement

 Theoretical calculation (algorithm)

 (or) Tools

• Typical application: Linpack (Top500)

4

0

100,000

200,000

300,000

400,000

500,000

600,000

0 4 8 12 16 20 24 28 32 36 40 44 48

F
lo

p
/s

#processes

Higher is better

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Bandwidth

• Bandwidth (throughput) in GB/s

 Main memory bandwidth (node granularity)

 Cache bandwidth (socket/ core granularity)

 Network bandwidth (cluster granularity)

• Remarks

 Many HPC applications are bound

by memory bandwidth

 Consider NUMA effects on node

• Getting GB/s

 Runtime measurement

 Theoretical calculation of Bytes

 (or) Tools

• Typical application: STREAM

5

0

20

40

60

80

100

120

140

0 4 8 12 16 20 24 28 32 36 40 44 48

m
e
m

o
ry

b
a
n
d
w

id
th

[G
B

/s
]

#processes

Higher is better

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Speedup

• Ratio between runtime 𝑡 of some reference version 𝑟𝑒𝑓 and the (relevant)

application version 𝑎𝑝𝑝

t is wallclock time

„𝑎𝑝𝑝 is 𝑆 times faster than 𝑟𝑒𝑓“:

• Remarks

 Kernel speedup

 Application speedup

• Comparison examples

 GPU vs. CPU version: 𝑆 =
𝑡𝐶𝑃𝑈

𝑡𝐺𝑃𝑈

 Parallel vs. serial version: 𝑆 =
𝑡𝑠𝑒𝑟𝑖𝑎𝑙

𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

6

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 𝑺 =
𝒕𝒓𝒆𝒇

𝒕𝒂𝒑𝒑

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Strong Scaling

• In parallel computing: Indicator for relative performance improvement

• Assumption

 Variation of number of processes 𝑁

 Keep data set fixed

• Ideal situation: All work is perfectly parallelizable Linear speedup

 In general: Upper bound for parallel execution of programs

7

𝑊1

Timeline

𝑊2 𝑊3 𝑊4

𝑊1

𝑊2

𝑊3

𝑊4

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 𝑺(𝑵) =
𝒕(𝟏)

𝒕(𝑵)

0

8

16

24

32

40

48

0 4 8 12 16 20 24 28 32 36 40 44 48

s
p
e
e
d
u
p

#processes

Higher is better

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Strong Scaling

• Real-world limitations of scalability: serial parts in code

 Serial portion 𝑠, parallel portion 𝑝

 Refer to “Amdahl‘s Law”

• Remarks

 In reality, no task in perfectly parallelizable

8

Timeline

𝑊1 𝑊2 𝑊3 𝑊4serial serial

serial

𝑊1

𝑊2

𝑊3

𝑊4

serial

0

8

16

24

32

40

48

0 4 8 12 16 20 24 28 32 36 40 44 48

s
p
e
e
d
u
p

#processes

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 𝑺(𝑵) =
𝟏

𝒔 +
𝒑
𝑵

Amdahl’s Law

𝑆
𝑁→∞1

𝑠

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Weak Scaling

• Why do we have big clusters if scalability is limited by Amdahl’s Law?

 Use bigger problem sizes!

• Assumption

 Variation of number of processes 𝑁

 Data set size changes with number of processes (e.g., doubling)

9

𝑊1
Timeline

𝑊3

𝑊4

𝑊1

𝑊2

𝑊1

𝑊2

𝑊1

𝑊3

𝑊4

𝑊1

𝑊2

𝑊1

𝑊2

Strong scaling (p*t(1)=const) Weak scaling (t(N)=const)

n=1

n=2

n=4

n=1

n=2

n=4

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Weak Scaling

• Gustafson’s Law

• Perfect weak scaling: roughly constant

runtime among varying #processes

10

0

500

1,000

1,500

2,000

2,500

3,000

3,500

0 4 8 12162024283236404448

ru
n
ti
m

e
 [

s
]

#processes

0

8

16

24

32

40

48

0 4 8 12 16 20 24 28 32 36 40 44 48

s
p
e
e
d
u
p

#processes

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 𝑺 𝑵 = 𝑵𝒑 + 𝒔

Performance Measurements

11

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Scalability Myth: Code scalability is the key issue

Prepared for

the highly

parallel era?!

Changing only the

compile options makes

this code scalable on

an 8-core chip

–O3 -xAVX

Courtesy of Erlangen Regional

Computing Center (RRZE)

Parallel program is X times

faster than serial program.

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Scalability Myth: Code scalability is the key issue

Single core/socket efficiency

is key issue!

Courtesy of Erlangen Regional

Computing Center (RRZE)

Absolute performance

First goal should be optimizing serial code

before conduction parallel code tuning

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Tuning Cycle

1. Find out where most of the runtime is spent

 Usually starts with a hotspot analysis

2. Find out why most of the runtime is spent

there (analyze data)

 Determine which factors stall

performance (e.g. by hardware counters)

3. Optimize your code to get a decreased runtime

4. Test the correctness of code & its performance

 Use appropriate problem size

 Start with step (1) if test not successful

14

Collect Data

Analyzing

Optimizing

Test
Program

Collect Data

Analyzing

Optimizing

Test
Program

Collect Data

Analyzing

Optimizing

Test
Program

Collect Data

Analyzing

Optimizing

Test
Program

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Preamble: Performance Engineering

• Performance engineering depends on different levels

• Some architectural levels may be shared resources (even in batch mode)

 Example: Processes from different users may run on the same node

 Possible impact: shared cache und memory channel utilization

 If necessary: request node exclusively

• Efficient usage of hardware resources important

 If you use exclusive nodes, try to leverage the available

parallelism (e.g., multiple cores)

 Otherwise: idling hardware, and money not well invested

 Metrics, e .g., productivity
𝑎𝑝𝑝.𝑟𝑢𝑛𝑠

𝑐𝑜𝑠𝑡 (𝑇𝐶𝑂)
, efficiency 𝜀(𝑁) =

𝑆(𝑁)

𝑁

15

Cluster Node Core Accelerator

#SBATCH --exclusive

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Preamble: Performance Engineering

Performance measurements and analysis heavily relies on a good test setup

• Data set

 Find a representative data set (i.e., algorithmic & performance similarity to real data set)

 Choose problem size not too small since performance behavior changes with the size of

the memory consumption

 Choose problem size not too large since tests need to be done quite often to compare

tuning steps

 To guarantee correct simulation results, use (automatic) correctness checks

• Interpreting performance data

 Try to establish a “stable” testing environment to get repeatable performance results (e.g.,

use thread binding or exclusively-reserved nodes)

 Repeat application runs to eliminate outlier behavior (if possible)

 Use appropriate statistical data analysis of performance results (e.g., mean, standard

deviation, significance)

16

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Preamble: Hotspots

• A Hotspot is a source code region where a significant part of the runtime is spent.

• Hotspots can indicate where to start with serial optimization or shared memory

parallelization.

• Use a tool to identify hotspots. In many cases the results are surprising.

17

90/10 law

90% of the runtime in a program is spent in 10% of the code.

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Collection of Performance Data

• Performance analysis tools are highly recommended

to easily identify hotspots & collect performance data

 Alternative: manual timing of code parts (limited)

Recording techniques

• Profiling

 Retrieves summary information

of a program’s runtime behavior

 Applies “instrumentation” or

“sampling” for triggering

• Tracing

 Time-ordered list of all the events

that were recorded during program

flow (event trace)

18

Collect Data

Analyzing

Optimizing

Test
Program

Tracing Profiling

Precision exact information accumulated

information

Overhead higher overhead

(depends on #events)

lower runtime

overhead

Space

requirements

easily hundreds of

MB or GB for larger

applications

(depends on #events)

smaller amount of

space needed

normally some MB

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Collection of Performance Data: Function Profiling

• Profile information per function

 Exclusive (not counting any callees of the function) or

inclusive (including callees of function) runtimes

 Flat profile or callgraph profile

• Profiling tools, e.g.

 gprof (uses instrumenation + sampling)

 Intel VTune Amplfier XE

19

% cumulative self self total

time seconds seconds calls ms/call ms/call name

86.65 0.62 0.62 1 615.21 615.21 f1

9.94 0.69 0.07 1 70.60 685.81 f2

4.26 0.72 0.03 1 30.26 30.26 f4

0.00 0.72 0.00 1 0.00 615.21 f3

% of overall program

runtime used exclu-

sively by this function

#seconds used by

this function

(exclusive)

Average number of

ms per call that were

spent in this function

(exclusive)

#calls of

this function

Average

number of

ms per call

that were

spent in this

function

(inclusive)

g
p
ro

f
e
x
a
m

p
le

gprof @ RWTH

Compile with -pg:
$ gcc –pg test.c –o a.out
Execute (will collect data in

gmon.out)

$./a.out
Generate report

$ gprof a.out gmon.out >
profile-data.txt
View report
$ cat profile-data.txt

Intel VTune @ RWTH
$ module load intelvtune
$ amplxe-gui
or use command line version

Hotspot is
function f1

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Performance Analysis

• Based on hardware performance counters

 Special registers as part of hardware architecture

 Count hardware-related information

 Examples

 Memory/ cache accesses

 Floating-point operations

 Cycles per instructions (CPI)

• Evaluations, e.g.,

 Concurrency

 Load Imbalance

 Metrics: https://hpc-wiki.info/hpc/ProPE_PE_Process

• Performance analysis tools, e.g.,

 Intel VTune Amplifier XE (medium-level)

 LIKWID (low-level)

 ARM Performance Reports (high-level)

 Intel Performance Snapshot (high-level)

20

LIKWID @ RWTH
$ module load likwid
$ likwid-perfctr <...>

Collect Data

Analyzing

Optimizing

Test
Program

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Performance Analysis: Getting an High-level Overview

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Performance Analysis: Getting an High-level Overview

ARM Performance

Reports @ RWTH

Limited number of

licenses

Just execute your

application with perf-

report:
$ module load reports
$ perf-report
$MPI_BINDIR/mpirun -np 4
a.out
$ firefox IMB-
MPI1_4p_1n_1t_2019-02-
05_10-58.html

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Performance Analysis: Getting an High-level Overview

23

Intel Performance Snapshot @ RWTH

Works only with Intel MPI

$ module load intelvtune
Getting started: https://software.intel.com/en-us/get-started-

with-application-performance-snapshot

HPC Intro – Performance Metrics & Measurements

Daniel Schürhoff

Summary

• HPC goal: reduce application runtime

 Serial and parallel performance optimization

• Performance metrics

 Absolute metrics: runtime, Flop/s, GB/s

 Relative metrics: speedup (strong/ weak scaling)

• Performance measurements

 Use requested HPC resources efficiently

 Start with simple performance measurements

like hotspot analyses and then focus on these

hotspots

 Performance analysis tools help to collect and

analyze performance data

24

Collect Data

Analyzing

Optimizing

Test
Program

Performance Engineering:

Tuning Cycle

