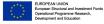


Introduction to Deep Neural Networks

Georg Zitzlsberger

georg.zitzlsberger@vsb.cz

25-03-2022



Agenda

Introduction

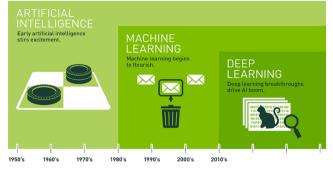
New Generation Silicon

Neuronal Networks

Optimizations for Inference

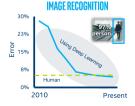
Summary

Introduction



(Image: Intel)

(Image: NVIDIA)

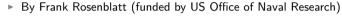


VSR TECHNICAL | TTAINNOVATIONS UNIVERSITY NATIONAL SUPERCOMPUTING

History

Only very brief:

▶ 1950: Perceptron



- ► 20×20 input photocells
- Electro-mechanic
- Not capable enough for multi-class patterns (only one layer)

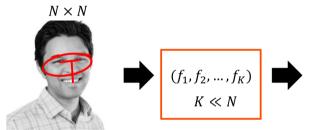
- ► First AI winter (1974-1980)
- ▶ 1989:

Yann le Cun's Theoretical Framework for Back-Propagation

- Second AI winter (1987-1993)
- 2012: Dawn of Deep Neuronal Networks with AlexNet
- What's next? Al winter or Singularity?

(Image: Cornell Aeronautical Laboratory)

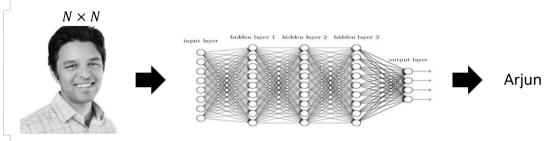
Machine Learning: Feature Engineering



SVM Random Forest Naïve Bayes Decision Trees Logistic Regression Ensemble methods

!! Takes lot of time

Deep Learning: Data Engineering



Features are discovered from data Extract features at multiple levels of abstraction

Performance improves with more data

High degree of representational power

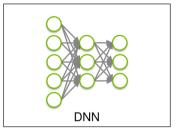
But old practices apply:

Data cleaning, Exploration, Data annotation, hyper-parameters, etc.

Machine Learning vs. Deep Learning

- Pro Machine Learning (ML):
 - Best control over feature space
 - Preference if mathematical models exist that can be expressed directly
 - Guarantee of best solution (e.g. SVM with convex kernels)
 - Can work with less data
- ► Pro Deep Learning (DL):
 - ► Tackle complex problem spaces w/o feature engineering
 - Ensemble of networks possible
 - Allows to process large amounts of (i.i.d.) data
 - Easy to use across multiple nodes/GPUs

New Generation Silicon



(Image: NVIDIA)

Why now?

- Big Data: Large amounts of data are available
- Recent Deep Network Development:
 New Deep Learning methodologies evolved (2010 onwards)
- ► Hardware:

 Modern systems are fast enough and have the memory needed

NVIDIA Tesla P100 (Pascal)

(Image: NVIDIA)

- ▶ Peak 4.7 TFLOPS (double precision), 9.3 TFLOPS (single precision), 18.7 (half precision)
- ▶ 12/16 GB HBM2 (CoWoS)
- ▶ Peak memory bandwidth: 549 GB/s (12 GB), 732 GB/s (16 GB)
- ▶ 3584 CUDA cores
- ► NVLink v1 (SXM) or PCle x16 Gen3
- ▶ 300 (SXM) Watts, 250 Watts (PCIe)

NVIDIA Tesla V100 (Volta)

(Image: NVIDIA)

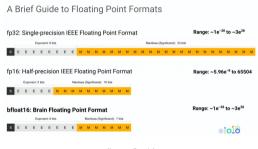
- ▶ Peak 7.8 TFLOPS (double precision), 15.7 TFLOPS (single precision), 125 (half precision)
- ▶ Up to 125 "TensorTFLOPS" for Deep Learning
- ▶ 16/32 GB HBM2 (CoWoS)
- ▶ Peak 900 GB/s memory bandwidth
- ▶ 5120 CUDA cores + 620 Tensor Cores
- ▶ NVLink v2 (SXM) or PCle x16 Gen3
- ▶ 300 (SXM) Watts, 250 (PCIe)

NVIDIA A100 (Ampere)

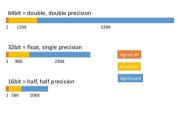
(Image: NVIDIA)

- ▶ Peak 9.7 TFLOPS (double precision), 19.5 TFLOPS (single precision), 312 (half precision)
- \blacktriangleright Up to 312 "TensorTFLOPS" for Deep Learning (624/1248 INT8/4)
- ▶ 40/80 GB HBM2 (CoWoS)
- ▶ Peak 1.6/2.0 TB/s memory bandwidth
- ▶ 6912 CUDA cores + 432 Tensor Cores
- ▶ NVLink v2 (SXM) or PCle x16 Gen3
- ▶ 400 (SXM) Watts, 250 (PCIe)

Excursion: Floating Point Types



Format of Floating points IEEE754



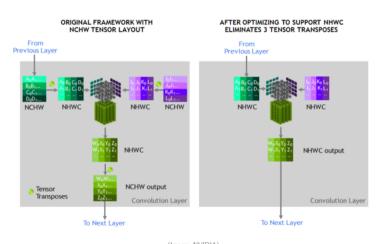
(Image: Google)

(Image: NVIDIA)

- ► FP32, FP16 and BFloat16¹ are of interest for Deep Learning (DL)
- ▶ FP64 is not common for DL but other Machine Learning algorithms
- Also integer types can be used (e.g. INT4, INT8)

¹Note that we use the term "half precision" for FP16, which does not include BFloat16

NVIDIA Tesla V100 Tensor Cores



(Image: NVIDIA)

More information in the blog Volta Tensor Core GPU Achieves New AI Performance Milestones

NVIDIA Tesla T4 (Turing)

(Image: NVIDIA)

- ▶ Peak 8.1 TFLOPS (single precision)
- ▶ Up to 65 "TensorTFLOPS" for Deep Learning, 130/260 INT8/4 TOPS for inference
- ▶ 16 GB GDDR6
- ▶ Peak 300 GB/s memory bandwidth
- ▶ 2560 CUDA cores + 320 Tensor Cores
- ▶ PCle x16 Gen3
- 70 Watts

NVIDIA Tesla Benchmarks

► Single Precision (FP32):

GPU	P100	V100	T4
Max. TFLOPS	9.32	14.02	8.07
FFT TFLOPS	1.51	2.30	0.66
GEMM TFLOPS	8.79	13.48	3.29
Theoretic Peak TFLOPS	9.3	15.7	8.1

▶ Double Precision (FP64):

GPU	P100	V100	T4
Max. TFLOPS	4.74	7.07	0.25
FFT TFLOPS	0.76	1.15	0.13
GEMM TFLOPS	4.26	5.92	0.25
Theoretic Peak TFLOPS	4.7	7.8	N/A

Results published at Finitroway.com

Deep Learning Performance

GPU PERFORMANCE COMPARISON

	P100	V100	Ratio
DL Training	10 TFLOPS	120 TFLOPS	12x
DL Inferencing	21 TFLOPS	120 TFLOPS	6x
FP64/FP32	5/10 TFLOPS	7.5/15 TFLOPS	1.5x
HBM2 Bandwidth	720 GB/s	900 GB/s	1.2x
STREAM Triad Perf	557 GB/s	855 GB/s	1.5x
NVLink Bandwidth	160 GB/s	300 GB/s	1.9x
L2 Cache	4 MB	6 MB	1.5x
L1 Caches	1.3 MB	10 MB	7.7x

(Image: NVIDIA)

Heads-up:

- ► Real performance highly dependent on layers/operations used
- ▶ Uses half/mixed precision parameters that might or might not deliver the same/comparable model accuracy
- Assumes that the entire model and data fits into GPU memory

NVIDIA DGX

(Image: NVIDIA)

NVIDIA DGX-1:

- ▶ 8x V100 GPUs (also exists with P100 GPUs)
- ▶ Deep Learning: 1,000 TFLOPS (peak)
- ► CUDA cores: 40,960
- ► Tensor cores: 5,120
- ▶ Host system: 2x 20 core Intel E5-2698v4, 256 GB memory
- ▶ Power consumption: 3,500 Watts

NVIDIA DGX

(Image: NVIDIA)

NVIDIA DGX-2:

- ▶ 16x V100 GPUs
- ▶ Deep Learning: 2,000 TFLOPS (peak)
- CUDA cores: 81,920
- ► Tensor cores: 10,240
- ▶ Host system: 2x 24 core Intel Xeon Platinum 8168 Processor, 512 GB memory
- ▶ 12 NVSwitches (for NVLinks)
- ▶ Power consumption: 10,000 Watts

NVIDIA DGX

(Image: NVIDIA)

NVIDIA DGX A100:

- ▶ 8x A100 GPUs
- ▶ Deep Learning: 5,000 TFLOPS (peak)
- ► CUDA cores: 55,296
- ► Tensor cores: 3,456
- ▶ Host system: 2x 64 core AMD Rome 7742 Processor, 1 TB memory
- 8 NVSwitches (for NVLinks)
- ▶ Power consumption: 6,500 Watts

NVIDIA DGX-1 vs. DGX-2

NVIDIA DGX-2 Delivers 195X Faster Deep Learning Training

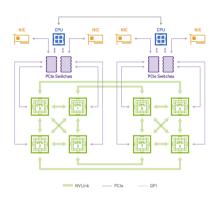
forkload: ResNet-50, B5=256, 90 epochs to solution | CPU: dual Xeon Platinum 8180 | DGX-1 GPU: 8X NVIDIA Tesla V100 326 | DGX-2 GPU: 16X NVIDIA Tesla V100 32GB

(Image: NVIDIA)

More benchmark results can be found at the NVIDIA Tesla Deep Learning Product Performance web page.

Also compare the official MLPerf results for training and inference here

NVLink

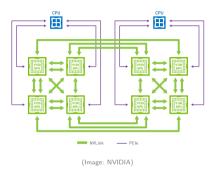


(Image: NVIDIA)

NVLink (v1):

- ► Tesla P100
- ► Hybrid Cube Mesh
- ► 4 links per GPU, 20 GB/s per direction/per NVLink (160 GB/s aggregated)

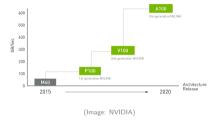
NVLink



NVLink 2.0:

- ► Tesla V100
- ► Hybrid Cube Mesh (also switch configuration possible)
- ▶ 6 links per GPU, 25 GB/s per direction/per NVLink2 (300 GB/s aggregated)

NVLink



NVLink 3.0:

- ► Tesla A100
- ▶ Hybrid Cube Mesh (also switch configuration possible)
- ▶ 12 links per GPU, 25 GB/s per direction/per NVLink3 (600 GB/s aggregated)

CPU vs. GPU: Architectural Advantages

▶ Pro CPU:

- More memory for larger models
- ► Easier I/O and to set up
- Some operations/layers can only be executed on the CPU (types or complexity)

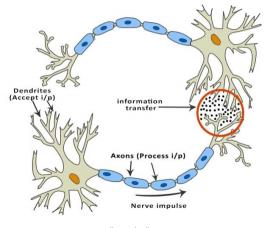
► Pro GPU:

- Very efficient if operations/layers are supported
- ▶ Divide I/O and training between CPU and GPU
- ▶ Best for deep networks (operations ≫ data ingestion)

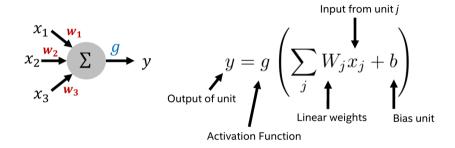
Neuronal Networks

MISTING

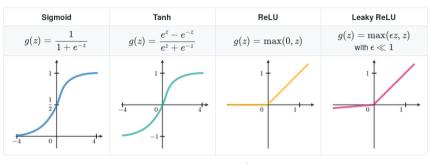
Inspired by biology:



Artificial Neuronal Networks



Activation Function

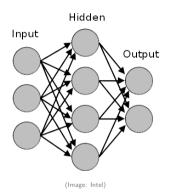


(Image: Afshine Amidi²)

- ► Adds non-linearity
- ▶ ReLU is currently the most popular (est. 2010)

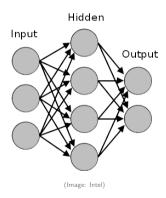
Deep Neural Network

Example of a "Deep" Neural Network:



- Layers can have different number of neurons
- ▶ Input and output formats can be arbitrary
- ▶ There can be multiple (hundreds) of hidden layers
- ► Typically output is combined with *softmax* function (probabilistic output)
- ▶ Example shows fully connected network, which is a special case

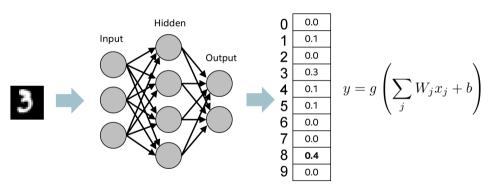
Deep Neural Network Operation



- 1. Random weights
- 2. Get a random batch of training data
- 3. Forward propagation
- 4. Calculate cost (loss)
- 5. Backward propagation
- Update weights and bias
- 7. Goto step 2.

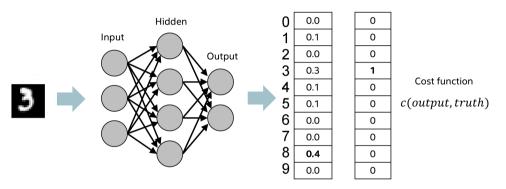
Deep Neural Network: Forward Propagation

Example for one digit (image):



Deep Neural Network: Cost Function

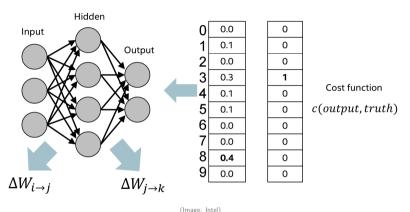
Example of a cost (or loss) function:



- ► How far off are we from the ground truth?
- Example has labeled data (different if non-labeled data)

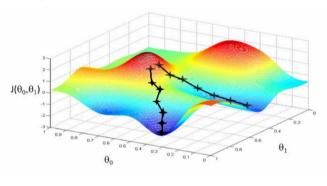
Deep Neural Network: Backward Propagation

How weights are updated:



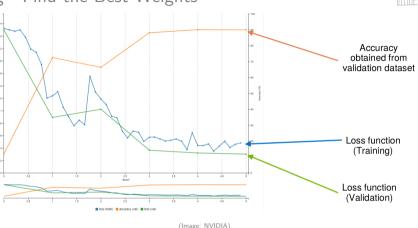
- From back to front (problem: vanishing gradient for deep networks)
- ► Changes of the weights are usually dampened/controlled by a changing learning rate.

Deep Neural Network: Stochastic Gradient Descent How to find the best weight updates:



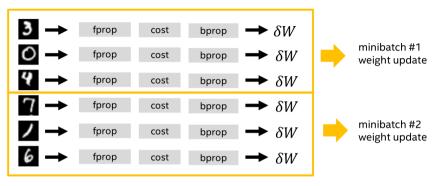
- ► Gradient descent methods, e.g.:
 - Stochastic Gradient Descent (SGD)
 - ► Adaptive Moment Estimation (ADAM)
- ightharpoonup Example: only two weights (θ_1,θ_2) with cost in 3rd dimension
- ► Multiple (local) minima are possible

Training - Find the Best Weights



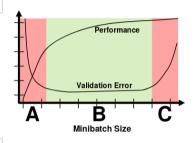
- Data sets separated into training, validation, and testing sets
- ► Training data set is repeatedly used for training (over epochs)
- ▶ Validation data: Track the performance of the network during training
- ► Testing data set: Final independent performance validation

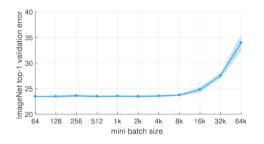
Excursion: Minibatch



- ▶ Back-propagation is very expensive compared to forward-propagation
- ightharpoonup Group training data in batches (so-called *minibatch*) of size N
- $ightharpoonup N = \frac{training_{size}}{\#_{batches}}$
- ▶ A minibatch allows parallel forward-propagation

Excursion: Minibatch Performance





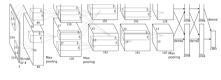
(Image: Ben-Nun, et al.)

- ► A higher mini-batch size increases performance
- ► However:
 - ▶ The larger the batch, the worse the training performance
 - ▶ The more memory is needed to store the parameters (problem for GPUs)
- Sweet spot needs to be found empirically

Deep Network Examples

AlexNet:

- ► Won ImageNet Challenge 2012
- ▶ 5 conv. + 3 fully connected layers
- ► 60 million parameters



(Image: Krizhevsky, et al.)

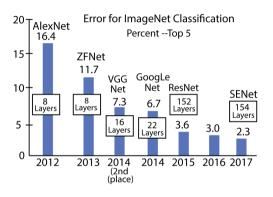
An overview of more can be found here

ResNet:

- Won ImageNet Challenge 2015
- Mitigates vanishing gradient problem
- ▶ 25 million parameters

(Image: He, et al.)

Image Classification Errors



(Image: principlesofdeeplearning.com)

- ► Trend: More layers
- ► Error (performance) converges
- ► Ensemble networks were used last

Programming

How to "program" Deep Neural Networks is different:

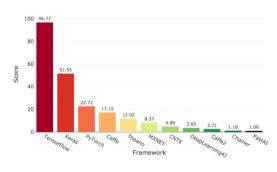
- ▶ In two phases:
 - Training (time consuming)
 - ► Inference (usage)
- High quality and quantity training (and validation/testing) data is needed
- Output is probabilistic
- Programming with frameworks:
 - ▶ TensorFlow
 - CNTK

Keras

- ▶ Theano
- PyTorch
- ► Caffe{2}

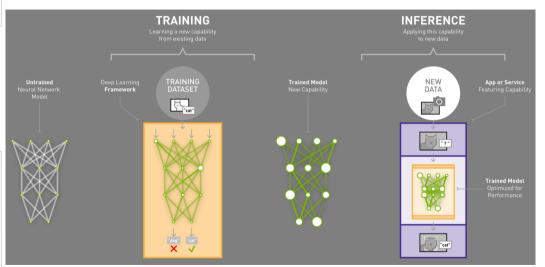
▶ ..

Deep Learning Framework Power Scores 2018



(Image: keras.io)

Training vs. Inference



How to get Started?

Model Zoos make it easy to start:

- Use existing models
- Use pre-trained models for transfer learning

Model Zoo examples:

- ► Tensorflow: ► here
- ► PyTorch: ► here
- ► Caffe (BVLC): ► here
- ▶ ..

Pretrained models are also available (e.g. for believed detection with Tensorflow)

Optimizations for Inference

Training needs parallelism, but what about inference?

- Inference is the actual use of the network
- Inference only does forward propagation (weights are fixed)
- ► Trained networks can be optimized for inference:
 - Optimize away inactive neurons (due to drop-out)
 - Fuse layers and operations and remove redundancies
 - Optimize data structures
 - Optimize for different target architectures
 - Quantize (reduce precision of data types)
 - ▶ ...

Optimizers exist:

- ► TensorRT from NVIDIA ► TensorRT Documentation
- ► Intel Deep Learning Deployment Toolkit from Intel OpenVino
- ▶ Both support Open Neural Network Exchange (ONNX) format

Optimizations: NVIDIA TensorRT

Step 1: Optimize trained model

Step 2: Deploy optimized plans with runtime

(Image: NVIDIA)

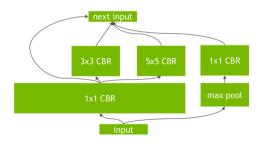
Optimizations: NVIDIA TensorRT

LAYER & TENSOR FUSION

Un-Optimized Network



TensorRT Optimized Network



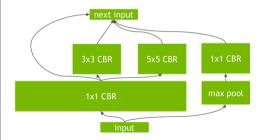
Optimizations: NVIDIA TensorRT

LAYER & TENSOR FUSION

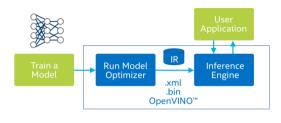
- Vertical Fusion
- Horizonal Fusion
- · Layer Elimination

Network	Layers before	Layers after
VGG19	43	27
Inception V3	309	113
ResNet-152	670	159

TensorRT Optimized Network



Optimizations: Intel OpenVino



(Image: Intel)

Model Optimizer:

- Optimize for endpoint target device
- ► Transform to intermediate representation (IR)
- ▶ Validated with over 100 public models for Caffe, Tensorflow, MXNet and ONNX

Inference Engine:

- ► Execute different layers on different targets (parallelism)
- Implement custom layers on a CPU

Summary

- Deep Neural Networks have shown and still show remarkable results
- Latest Hardware architecture improvements fuel DL further
- ▶ There are many DL frameworks for training and inference
- ► There are vendor specific extensions (Intel or NVIDIA)

Great State of the Art (academic) overview:

▶ Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis

(Tal Ben-Nun and Torsten Hoefler)

IT4Innovations National Supercomputing Center

VŠB – Technical University of Ostrava Studentská 6231/1B 708 00 Ostrava-Poruba, Czech Republic www.it4i.cz VSB TECHNICAL

| | UNIVERSITY
OF OSTRAVA

IT4INNOVATIONS
NATIONAL SUPERCOMPUTING
CENTER

