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Agenda

▪ Accelerating Serial MATLAB Code

▪ Introduction to Parallel Computing with MATLAB

▪ Speeding up computation with the Parallel Computing Toolbox

▪ Using GPUs with MATLAB

▪ Scaling up to a Cluster using MATLAB Parallel Server

▪ Overview of Big Data Capabilities in MATLAB (Optional)
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Accelerating Serial MATLAB Code
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Run MATLAB code faster by …

▪ installing the latest release

– Incremental improvements each release

– Examples: Faster differential equation solvers 

and reading of images, render plots using 

less memory

– Increased speed of MATLAB startup

▪ using built-in functions and data-types:

– Regular performance improvements

– These are extensively documented and 

tested with each other; constantly updated.
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Optimize your code before parallelizing for best performance

Try using functions instead of scripts. Functions are generally faster.

Instead of resizing arrays dynamically, pre-allocate memory. 

Create a new variable rather than assigning data of a different type to an existing variable. 

Vectorize — Use matrix and vector operations instead of for-loops. 

Avoid printing too much data on the screen, reuse existing graphics handles.

Avoid programmatic use of cd, addpath, and rmpath when possible.
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Optimize your code before parallelizing for best performance

▪ Use tic & toc to 

– time your code executions

▪ Use MATLAB Profiler to 

– analyse the execution time 

– Identify bottlenecks.

Techniques for accelerating MATLAB algorithms and applications

https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
http://www.mathworks.com/discovery/matlab-acceleration.html
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Optimize your code before parallelizing for best performance

▪ Replace code with MEX functions 

(Advanced)

– Generate MATLAB Executable (MEX) 

C/C++ or CUDA code from a function.

– Use MATLAB Coder & GPU Coder Apps to 

generate code more easily.

– Lots of supported functions

– Massive speed-up for certain applications

Techniques for accelerating MATLAB algorithms and applications

https://www.mathworks.com/help/matlab/ref/mex.html
https://www.mathworks.com/help/coder/ug/functions-and-objects-supported-for-cc-code-generation.html
https://www.mathworks.com/help/matlab/ref/mex.html
http://www.mathworks.com/discovery/matlab-acceleration.html
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Now for something different:

▪ So far we’ve mostly talked about using only one core of your computer

– But your CPU probably has many cores (2-16+), which you can utilise.

– You may also have access to a GPU, which has hundreds of cores.

– Or a powerful workstation or HPC Cluster or an AWS EC2 instance with multiple cores. 

▪ Now we’ll look at how to utilise these.

– We are using the Parallel Computing Toolbox on your local machine 

– and MATLAB Parallel Server for (remote) cluster or cloud computing
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What is Parallel Computing?

Serial Parallel

Code executes in sequence Code executes in parallel
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Processor: Intel Xeon E5-class v2

16 physical cores per node

MATLAB R2017a

Workers 

in pool

Compute time

(minutes)

160e3

values

40e3 

values

400

values

25 

values

1 70 17 0.19 0.02

20 3.6 0.9 0.02 0.01

40 1.8 0.5 0.02 0.01

80 1.0 0.3 0.02 0.01

160 0.5 0.2 0.02 0.01

240 0.4 0.1 0.02 0.01

Why is Parallel Computing useful?
Great potential for accelerating certain types of applications

200x faster! 
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What types of problems can Parallel Computing be used for?

▪ Large problems that can be easily 

broken down into lots of smaller 

ones, which are then solved at the 

same time

▪ “Embarrassingly Parallel”

– Term originally coined by Cleve 

Moler, who created the first version of 

MATLAB in 1984

Some Examples:

▪ Mesh-based solutions for Partial 

Differential Equations (PDEs)

▪ Independent Simulations with different 

parameters

▪ Discrete Fourier Transforms, with each 

harmonic calculated independently

https://www.mathworks.com/company/aboutus/founders/clevemoler.html
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Parameter Sweep for a van der Pol Oscillator (a common ODE): 
Speeding up the same code in three different environments



13

When to use Parallel Computing?
Some questions to consider

▪ Do you need to solve larger problems faster?

▪ Have you already optimized your serial code?

▪ Can your problem be solved in parallel?

▪ If so, do you have access to:

– A multi-core or multi-processor computer?

– A graphics processing unit (GPU)?

– Access to an HPC Cluster or AWS?
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NASA Langley Accelerates Acoustic Data Analysis with GPU Computing

Challenge
Accelerate the analysis of sound recordings from 

wind tunnel tests of aircraft components

Solution
▪ Use Parallel Computing Toolbox to process 

acoustic data

▪ Cut processing time by running computationally 

intensive operations on a GPU

Results
▪ GPU computations completed 40 times faster

▪ Algorithm GPU-enabled in 30 minutes

▪ Processing of test data accelerated

“Our legacy code took up to 40 minutes to analyze a 

single wind tunnel test. The addition of GPU computing with 

Parallel Computing Toolbox cut it to under a minute. It took 

30 minutes to get our MATLAB algorithm working on the 

GPU—no low-level CUDA programming was needed.”

- Christopher Bahr, research aerospace engineer at NASA

Link to user story

Wind tunnel test setup featuring the Hybrid Wing 

Body model (inverted), with 97-microphone phased 

array (top) and microphone tower (left).

http://www.mathworks.com/company/user_stories/nasa-langley-research-center-accelerates-acoustic-data-analysis-with-gpu-computing.html?by=company
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Virgin Orbit Simulates LauncherOne Stage Separation Events

Challenge

Simulate separation events for LauncherOne

spacecraft 

Solution

▪ Use MATLAB, Simulink, and Simscape

Multibody to model components and automate 

Monte Carlo simulations

▪ Used Parallel Computing Toolbox to run 

simulations in parallel on multicore processors

Results

▪ Simulations completed 10 times faster

▪ Simulation set up times cut by up to 90%

▪ Hardware designs informed by simulation 

results

“With Simulink, we can employ simplifying assumptions and 

parallel processing to reduce simulation times from days to 

hours…Just as important, we can automate the simulations so 

they run in the background or overnight, and have the results 

waiting for us in the morning.”

- Patrick Harvey,  Associate Engineer at Virgin Orbit

Link to user story

Virgin Orbit’s LauncherOne vehicle assembled (top), with 

exploded view showing the fairing, payload, and first and 

second stages (bottom).

https://www.mathworks.com/company/user_stories/virgin-orbit-simulates-launcherone-stage-separation-events.html
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Introduction to Parallel Computing with MATLAB



17

Most of your MATLAB code runs on one core 

Core 3

Core 1 Core 2

Core 4

CPU with 4 cores

Multi-core CPU

MATLAB
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Run multiple iterations by utilizing multiple CPU cores

Core 3

Core 1 Core 2

Core 4

CPU with 4 cores

Multi-core CPU

MATLAB
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MATLAB has built-in multithreading

Multi-core CPU

MATLAB

MATLAB multicore

https://www.mathworks.com/discovery/matlab-multicore.html
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Multi-core CPU

Parallel Computing Toolbox

MATLAB workers execute applications in parallel

MATLAB

MATLAB multicore

https://www.mathworks.com/discovery/matlab-multicore.html
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MATLAB + Parallel Computing Toolbox
Leverage multiple cores on your machine with explicit parallel techniques

▪ The Parallel Computing Toolbox provides 

the functionality to distribute MATLAB code 

across multiple MATLAB worker.
CPU with 4 cores

Multi-core CPU

MATLAB

Parallel Computing Toolbox
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MATLAB + Parallel Computing Toolbox
Terminology

▪ MATLAB client: 

– the MATLAB session you interact with.

– The client instructs the workers with parallel 

language functions.

▪ Parallel pool:

– a set of MATLAB workers.

▪ MATLAB workers:

– MATLAB computational engines that run in 

the background without a graphical desktop.

CPU with 4 cores
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MATLAB + Parallel Computing Toolbox 
Only simple modifications to your code required

Three good commands to know:

for →  parfor (parallel for-loop)

feval →  parfeval (parallel function evaluations)

sim →  parsim (parallel Simulink runs)
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▪ Run iterations in parallel

▪ Examples: parameter sweeps, Monte Carlo simulations

Time Time

Learn more about parfor

Explicit parallelism with parfor

Workers

MATLAB

https://www.mathworks.com/help/parallel-computing/decide-when-to-use-parfor.html


25

MATLAB

a = zeros(5, 1);

b = pi;

for i = 1:5

a(i) = i + b;

end

disp(a)

a = zeros(5, 1);

b = pi;

parfor i = 1:5

a(i) = i + b;

end

disp(a)

Workers

Explicit parallelism with parfor
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a = zeros(10, 1);

b = pi;

parfor i = 1:10

a(i) = i + b;

end

disp(a)

Explicit parallelism with parfor

MATLAB

Workers
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• System of ODEs

ሶ𝑦1 = 𝜈𝑦2
ሶ𝑦2 = 𝜇 1 − 𝑦1

2 𝑦2 − 𝑦1

• Compute mean period of y

• Use parfor, study impact of 𝜈, 𝜇

Speed up a parameter sweep using parfor
Demo: Parameter sweep for van der Pol oscillator
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Hands-On Exercise: 
Introduction to parfor
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Factors that govern speedup of parfor loops 

▪ May not be much speedup when computation time is too short

▪ Execution may be slow because of: 

– Memory limitations (RAM)

– File access limitations

▪ Implicit multithreading

– MATLAB uses multiple threads for speedup of some operations

– Use Resource Monitor or similar on serial code to check on that

▪ Unbalanced load due to iteration execution times

– Avoid some iterations taking multiples of the execution time of other iterations



31

Optimizing parfor

Type Category

sliced input input

broadcast input

reduction output

sliced output output

loop only exist on worker

temporary only exist on worker

Troubleshooting variables in parfor-loops

Use more

Keep small

https://www.mathworks.com/help/releases/R2019b/parallel-computing/troubleshoot-variables-in-parfor-loops.html
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Execute additional code as iterations complete

▪ Send data or messages from 

parallel workers back to the 

MATLAB client

▪ Retrieve intermediate values and 

track computation progress

function a = parforWaitbar

D = parallel.pool.DataQueue;

h = waitbar(0, 'Please wait ...');

afterEach(D, @nUpdateWaitbar)

N = 200;

p = 1;

parfor i = 1:N

a(i) = max(abs(eig(rand(400))));

send(D, i)

end

function nUpdateWaitbar(~)

waitbar(p/N, h)

p = p + 1;

end

end
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Execute functions in parallel asynchronously using parfeval

▪ Asynchronous execution on parallel workers

▪ Useful for “needle in a haystack” problems 

MATLAB

Workers

for idx = 1:10

f(idx) = parfeval(@magic,1,idx);

end

for idx = 1:10

[completedIdx,value] = fetchNext(f);

magicResults{completedIdx} = value;

end

fetchNext

Outputs
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Hands-On Exercise: 
Introduction to parfeval
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Statistics and Machine Learning

Resampling Methods, k-Means 

clustering, GPU-enabled functions

Image Processing 

Batch Image Processor, Block 

Processing, GPU-enabled functions

Computer Vision
Bag-of-words workflow, 

object detectors

www.mathworks.com/products/parallel-computing/parallel-support

Deep Learning

Deep Learning, Neural Network 

training and simulation

Signal Processing and Communications 
GPU-enabled FFT filtering, cross 

correlation, BER simulations

Estimation of gradients, parallel search

Optimization and Global Optimization

Automatic parallel support (MATLAB)

Enable parallel computing support by setting a flag or preference

http://www.mathworks.com/products/parallel-computing/parallel-support
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Simulink Control Design

Frequency response estimation

Simulink/Embedded Coder

Generating and building code

Simulink Design Optimization

Response optimization, sensitivity 

analysis, parameter estimation

Communication Systems Toolbox

GPU-based System objects for 

Simulation Acceleration

Additional automatic parallel support

Automatic parallel support (Simulink)

Enable parallel computing support by setting a flag or preference

http://www.mathworks.com/products/parallel-computing/parallel-support.html
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Run multiple Simulink simulations in parallel with parsim

▪ Run independent Simulink 

simulations in parallel using 
the parsim function 

Workers

Time Time
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Benefits of using parsim

▪ Run multiple simulations on your machine or clouds and clusters

▪ Transfer base workspace variables to workers

▪ Automatically transfer all files to workers

▪ Automatically return file logging data

▪ Automatically manage build folders

▪ Display progress

▪ Manage errors

Desktop Multicore Cluster
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Profile Simulink performance

How Profiler Captures Performance Data

https://www.mathworks.com/help/simulink/ug/how-profiler-captures-performance-data.html
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Monitor multiple simulations at once with Simulation Manager

▪ View the progress of the 

simulations 

▪ Examine simulation settings 

and diagnostics

▪ View simulation results in the 

Simulation Data Inspector
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Simulation Manager can also be used to inspect the variation in 

outputs with parameters

▪ Visualize simulation results as 

the simulations are running
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Accelerate applications with NVIDIA GPUs
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Using NVIDIA GPUs with the Parallel Computing Toolbox

GPU cores

Device Memory

Multi-core CPU

MATLAB

Parallel Computing Toolbox

GPU
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Leverage your GPU to accelerate your MATLAB code

▪ Ideal Problems

– massively parallel and/or 

vectorized operations

– computationally intensive

▪ 999+ GPU-supported 

functions (documentation)

▪ Use gpuArray and 

gather to transfer data 

between CPU & GPU

MATLAB GPU computing

https://www.mathworks.com/help/referencelist.html?type=function&capability=gpuarrays
https://www.mathworks.com/discovery/matlab-gpu.html
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How do I know if I have a supported GPU?

▪ In MATLAB, type:

>> gpuDevice

▪ If you see a CUDA Device, you 

are good to go.

– The key number to note is the 

‘ComputeCapability’

– See Support for NVIDIA GPU 

architecture by MATLAB release

https://www.mathworks.com/help/parallel-computing/gpu-support-by-release.html
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Run Same Code on CPU and GPU
Demo: Solving 2nd Order Wave Equation
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GPU

NVIDIA Tesla K20c

706MHz

2496 cores

memory bandwith 208 Gb/s

CPU

Intel(R) Xeon(R)

W3550 3.06GHz

4 cores

memory bandwidth 25.6 Gb/s
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Speeding up MATLAB Applications with GPUs

4x speedup 
adaptive filtering routine

77x speedup 
wave equation solving

12x speedup 
using Black-Scholes model

14x speedup 
template matching routine

10x speedup
K-means clustering algorithm

44x speedup 
simulating the movement of celestial objects 

NVIDIA Titan V GPU, Intel® Core™ i7-8700T Processor (12MB Cache, 2.40GHz)
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Scaling to Cluster with MATLAB Parallel Server

(Outlook)
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GPU

Multi-core CPU

Parallel computing on your desktop, clusters, and clouds

MATLAB Parallel Server

▪ Prototype and develop on the desktop

▪ Integrate with your infrastructure

▪ Access directly through MATLAB

MATLAB

Parallel Computing Toolbox

GPU

Multi-core CPU
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Scale to clusters and clouds

With MATLAB Parallel Server, you can…

▪ Use more hardware with minimal code 

change

▪ Submit to on-premise or cloud clusters

▪ Support cross-platform submission

– Windows client to Linux cluster
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Interactive parallel computing
Leverage cluster resources in MATLAB

a = zeros(5, 1);

b = pi;

parfor i = 1:5

a(i) = i + b;

end

myScript.m:

MATLAB Parallel Server

MATLAB

Parallel Computing Toolbox

>> parpool(myCluster,3)

>> myScript
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batch simplifies offloading computations 
Submit MATLAB jobs to the cluster

>> job = batch(myCluster,'myScript','Pool',3)

MATLAB

Parallel Computing Toolbox

parfor

MATLAB Parallel Server
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batch simplifies offloading simulations
Submit Simulink jobs to the cluster

>> job = batchsim(myCluster,in,'Pool',3)

MATLAB

Parallel Computing Toolbox

parsim

MATLAB Parallel Server
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• System of ODEs

ሶ𝑦1 = 𝜈𝑦2
ሶ𝑦2 = 𝜇 1 − 𝑦1

2 𝑦2 − 𝑦1

• Compute mean period of y

• Use parfor, study impact of 𝜈, 𝜇

Speed up a parameter sweep using parfor on a cluster with 

MATLAB Parallel Server 
Demo: Parameter sweep for van der Pol oscillator
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Working with Big Data 

(Optional)
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Big Data capabilities in MATLAB

Wouldn’t it be nice if we could:

▪ Easily access data however it is stored?

▪ Prototype algorithms quickly using small data sets?

▪ And then scale up to big data sets running on large clusters?

▪ All using the same intuitive MATLAB syntax we are used to?
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Big data workflow

ACCESS DATA

More data and collections

of files than fit in memory

DEVELOP & PROTOTYPE ON THE DESKTOP

Adapt traditional processing tools or 

learn new tools to work with Big Data

SCALE PROBLEM SIZE

To traditional clusters and Big 

Data systems like Hadoop 
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Access data with datastore

▪ For:

– Handling collections of files
or large files

▪ Provides:

– Preview and configure I/O properties

– Read data into memory
(all at once, or incrementally)

– Transform data one file at a time for 
data engineering workflows

– Combine with tall arrays to analyze 
the entire out-of-memory dataset 
with few code changes
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Use datastores for reading collections of files into memory

Access Explore and Discover Share*read

* = FROM
(file, source)

read*

* = INTO
(data type, format)

*write

* = TO
(file, source)

write*

* =  OUT OF
(data type, format)

*datastore

• * = ACCESS FROM
(file, source)

Choose data types

Select Datastore for File Format or Application 

readall(ds)

tabularTextDatastore
spreadsheetDatastore
fileDatastore
…

http://www-jobarchive.mathworks.com/Bdoc19a/latest_pass/matlab/help/matlab/import_export/select-datastore-for-file-format-or-application.html
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tall arrays

▪ Data type designed for data that doesn’t fit into memory

▪ Lots of observations (hence “tall”)

▪ Looks like a normal MATLAB array

– Supports numeric types, tables, datetimes, strings, etc.

– Supports several hundred functions for basic math, stats, indexing, etc.

– Statistics and Machine Learning Toolbox support 

(clustering, classification, etc.)

Working with tall arrays

https://www.mathworks.com/help/matlab/tall-arrays.html
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tall array
Single

Machine

Memory

tall arrays

▪ Automatically breaks data up into 

small “chunks” that fit in memory

▪ Tall arrays scan through the 

dataset one “chunk” at a time

▪ Processing code for tall arrays is 

the same as ordinary arrays

Single

Machine

MemoryProcess
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tall array

Cluster of

Machines

Memory

Single

Machine

Memory

tall arrays

▪ With Parallel Computing Toolbox, 

process several “chunks” at once

▪ Can scale up to clusters with 

MATLAB Parallel Server 

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess
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Big Data Without Big Changes

One file One hundred files
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distributed arrays

▪ Keep large datasets in-memory, split among workers running on a cluster

▪ Common Actions: Matrix Manipulation & Linear Algebra and Signal Processing

▪ Several hundred MATLAB functions overloaded for distributed arrays

1111 2626 4141

1212 2727 4242

1313 2828 4343

1515 3030 4545

1616 3131 4646

1717 3232 4747

2020 3535 5050

2121 3636 5151

2222 3737 5252

MATLAB Parallel Server

MATLAB

Parallel Computing Toolbox
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Big Data Capabilities in MATLAB with Parallel Computing

1111 2626 4141

1212 2727 4242

1313 2828 4343

1515 3030 4545

1616 3131 4646

1717 3232 4747

2020 3535 5050

2121 3636 5151

2222 3737 5252

Distributed Arrays

Apache Spark™ on Hadoop

Tall Arrays

Datastores



66

Summary – Working with Big Data in MATLAB

▪ Use datastores to manage data processing from large collections of files.

▪ Use Tall Arrays to process files too big to fit in memory.

▪ Use Distributed Arrays and GPU Arrays to parallelize problems for 

solving on multiple workers at once.

▪ Use Parallel Computing Toolbox (on Desktop) or MATLAB Parallel 

Server (on clusters) to scale-up solutions.
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Learn More on Big Data

▪ Strategies for Efficient Use of Memory

▪ Resolving "Out of Memory" Errors

▪ Big Data with MATLAB

▪ MATLAB Tall Arrays in Action

https://www.mathworks.com/help/matlab/matlab_prog/strategies-for-efficient-use-of-memory.html
https://www.mathworks.com/help/matlab/matlab_prog/resolving-out-of-memory-errors.html
https://www.mathworks.com/solutions/big-data-matlab.html
https://www.mathworks.com/videos/matlab-tall-arrays-in-action-122883.html
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Summary
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Run MATLAB on Multicore Machines

▪ Built-in multithreading (implicit)

– Automatically enabled in MATLAB 

– Multiple computational threads in a single MATLAB session

– Functions such as fft, eig, svd, and sort are multithreaded in MATLAB

– Additionally, many image processing functions are multithreaded

▪ Parallel computing using explicit techniques

– Multiple computation engines (workers) controlled by a single session

– High-level constructs to let you parallelize MATLAB applications 

– Perform MATLAB computations on GPUs

– Scale parallel applications beyond a single machine to clusters and clouds
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Scaling MATLAB applications and Simulink simulations

Automatic parallel support in toolboxes
(…,'UseParallel',true)

Common programming constructs

Advanced programming constructs
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Scaling MATLAB applications and Simulink simulations

Automatic parallel support in toolboxes

Common programming constructs
(parfor, parfeval, parsim, …)

Advanced programming constructs
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Scaling MATLAB applications and Simulink simulations

Automatic parallel support in toolboxes

Common programming constructs

Advanced programming constructs
(spmd, parfevalOnAll, …)
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Summary

▪ Use Parallel Computing Toolbox on the Desktop to speed up your 

computationally intensive applications using multiple CPU cores or GPUs.

▪ Scale up to Clusters or Cloud using MATLAB Parallel Server

▪ Use Big Data capabilities such as Tall and Distributed Arrays, 

Datastores to further scale up solutions.

Parallel Computing Toolbox

MATLAB

MATLAB Parallel Server

Steve Schäfer

MathWorks Academia Group

steves@mathworks.com
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