
MPI in Small Bites INNOVATION THROUGH COOPERATION.THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

HPC.NRW Competence Network

MPI in Small Bites



INNOVATION DURCH KOOPERATION.

Blocking Collective Communication

MPI in Small Bites

HPC.NRW Competence Network



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Collective Operations

 Involve all ranks in a given communicator

 Create a smaller communicator for collective communication in a subgroup

 All ranks must call the same MPI operation to succeed

 There should be only one call per MPI rank (i.e., not per thread)

 Process synchronization behaviour is implementation specific

 The MPI standard may allow for early return on some ranks

 Implement common group-communication patterns

 Usually tuned to deliver the best system performance

 Do not reinvent the wheel!



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Barrier Synchronisation

 The only explicit synchronisation operation in MPI: MPI_Barrier (MPI_Comm comm)

TimeRank 0

TimeRank 2

TimeRank 1

MPI_Barrier

MPI_Barrier

MPI_Barrier

MPI_Barrier

𝑡𝑆,1

𝑡𝑆,0

𝑡𝑆,2

𝑡𝐸,1

𝑡𝐸,2

𝑡𝐸,0

max 𝑡𝑆,0; 𝑡𝑆,1; 𝑡𝑆,2 < min(𝑡𝐸,0; 𝑡𝐸,1; 𝑡𝐸,2)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Barrier Synchronisation

 Useful for benchmarking

 Always synchronise before taking time measurements

 Huge discrepancy between the actual work time and the measurement

MPI_Init

MPI_Init

MPI_Init

Parallel work

Elapsed time as measured by the first rank



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Barrier Synchronisation

 Useful for benchmarking

 Always synchronise before taking time measurements

 Huge discrepancy between the actual work time and the measurement

MPI_Init

MPI_Init

MPI_Init

Parallel work

Elapsed time as measured by the first rank

MPI_Barrier

MPI_Barrier

MPI_Barrier



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Broadcast (one-to-many data replication)

 Replicate data from one rank to all other ranks:

 data: send buffer at root rank; receive buffer on all other ranks

 count: number of data elements

 datatype: elements’ datatype

 root: source rank; all ranks must specify the same value

 comm: communicator

 On all ranks but root, data is an output argument

 On rank root, data is an input argument

 Type signatures must match across all ranks ( Datatypes)

MPI_Bcast (void *data, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

From whom?

What?



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Broadcast (one-to-many data replication)

 Replicate data from one rank to all other ranks:

Broadcast
𝐴0

data

R
a
n
k
s 𝐴0

data

R
a
n
k
s

𝐴0

𝐴0

𝐴0

MPI_Bcast (void *data, int count, MPI_Datatype dtype,
int root, MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Broadcast (one-to-many data replication) – Wrong usage

 Replicate data from one rank to all other ranks:

 Example: int ival;

if (rank == 0)
ival = read_int_from_user();

MPI_Bcast(&ival, 1, MPI_INT, 0, MPI_COMM_WORLD);

// WRONG USAGE!
if (rank == 0) {

ival = read_int_from_user();
MPI_Bcast(&ival, 1, MPI_INT, 0, MPI_COMM_WORLD);

}
// The other ranks do not call MPI_Bcast  Deadlock

MPI_Bcast (void *data, int count, MPI_Datatype dtype,
int root, MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Broadcast (one-to-many data replication) – Naïve Implementation

void broadcast (void *data, int count, MPI_Type dtype,
int root, MPI_Comm comm)

{
int rank, nprocs, i;

MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &nprocs);
if (rank == root) {
for (i = 0; i < nprocs; i++)
if (i != root)
MPI_Send(data, count, dtype, i, TAG_BCAST, comm);

}
else
MPI_Recv(data, count, dtype, root, TAG_BCAST, comm,

MPI_STATUS_IGNORE);
}



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Scatter (one-to-many data distribution) 

 Distribute chunks of data from one rank to all ranks:

MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, 
int root, MPI_Comm comm)

Significant at root 

rank only



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Scatter (one-to-many data distribution) 

 Distribute chunks of data from one rank to all ranks:

 sendbuf must be large enough in order to supply sendcount elements of data to each

rank in the communicator

 Data chunks are taken in increasing rank order following

 root also sends one data chunk to itself

 Type signatures of must match across all ranks ( Datatypes)

MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, 
int root, MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Scatter (one-to-many data distribution) 

 Distribute chunks of data from one rank to all ranks:

Scatter
𝐴1

sendbuf

R
a
n
k
s 𝐴0

recvbuf

R
a
n
k
s

𝐴1

𝐴3

𝐴2

𝐴2 𝐴3𝐴0

MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, 
int root, MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Scatter (one-to-many data distribution) – Example

 Distribute chunks of data from one rank to all ranks:

 sendbuf is only accessed on the root rank

 recvbuf is written into in all ranks

 Example: int bigdata[100];                      // 10x10 elements
int localdata[10];

MPI_Scatter(bigdata, 10, MPI_INT, // send buffer, root only
localdata, 10, MPI_INT,    // receive buffer
0, MPI_COMM_WORLD);

MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, 
int root, MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Gather (many-to-one data distribution) 

 Collect chunks of data from all ranks in one place:

 The inverse operation to MPI_Scatter

 recvbuf must be large enough to hold recvcount elements from

each rank

 root also receives one data chunk from itself

 Data chunks are stored in increasing order of the sender’s rank

 Type signature of sendcount and sendtype must match recvcount and recvtype

MPI_Gather (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, 
int root, MPI_Comm comm)

Significant at root 

rank only



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Gather (many-to-one data distribution) 

 Collect chunks of data from all ranks in one place:

Gather
𝐵0

sendbuf

R
a
n
k
s

𝐶0

𝐷0

𝐴0

recvbuf

R
a
n
k
s 𝐴0 𝐵0 𝐶0 𝐷0

MPI_Gather (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, 
int root, MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Allgather (many-to-many data distribution) 

 Collect chunks of data from all ranks in all ranks:

 No root rank – all ranks receive a copy of the gathered data

 Each rank also receives one data chunk from itself

 Data chunks are stored in increasing order of sender’s rank

 Type signatures of must match across all ranks ( Datatypes)

 Logically equivalent to MPI_Gather + MPI_Bcast, but potentially more efficient

MPI_Allgather (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Allgather (many-to-many data distribution) 

 Collect chunks of data from all ranks in all ranks:

Gather to All
𝐵0

sendbuf

R
a
n
k
s

𝐶0

𝐷0

𝐴0

recvbuf

R
a
n
k
s

𝐴0

𝐴0

𝐴0

𝐵0 𝐶0 𝐷0

𝐴0

𝐵0 𝐶0 𝐷0

𝐵0 𝐶0 𝐷0

𝐵0 𝐶0 𝐷0

MPI_Allgather (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

All-to-All (many-to-many data distribution) 

 Combined scatter and gather operation:

 Each rank distributes its sendbuf to every rank in the communicator (including itself)

 Data chunks are read in increasing order of the receiver’s rank

 Data chunks are stored in increasing order of the sender’s rank

 Almost equivalent to multiple MPI_Scatter + MPI_Gather

MPI_Alltoall (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

All-to-All (many-to-many data distribution) 

 Combined scatter and gather operation:

All-to-All
𝐵1

sendbuf

R
a
n
k
s

𝐶1

𝐷1

𝐴1

𝐵2

𝐶2

𝐷2

𝐴2

𝐵3

𝐶3

𝐷3

𝐴3

𝐵0

𝐶0

𝐷0

𝐴0

recvbuf

R
a
n
k
s

𝐴1

𝐴2

𝐴3

𝐵1 𝐶1 𝐷1

𝐴0

𝐵2 𝐶2 𝐷2

𝐵3 𝐶3 𝐷3

𝐵0 𝐶0 𝐷0

MPI_Alltoall (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Reduce (many-to-one data reduction)

 Perform an arithmetic reduction operation while gathering data

 sendbuf: data to be reduced

 recvbuf: location for the result(s) (significant at root only)

 count/datatype: type signature of data

 op: reduction operation handle

 root: destination rank

 comm: communicator

 Result is computed in- or out-of-order depending on the operation:

 All predefined operations are associative and commutative

 Beware of non-commutative effects on floats

MPI_Reduce (void *sendbuf, void *recvbuf, int count, 
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Reduction Operators

 Some predefined operation handles:

 User-define operators possible (not covered here)

MPI_Op Result value

MPI_MAX Maximum value

MPI_MIN Minimum value

MPI_SUM Sum of all values

MPI_PROD Product of all values

MPI_LAND Logical AND of all values

MPI_BAND Bit-wise AND of all values

MPI_LOR Logical OR of all values

… …



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Reduce (many-to-one data reduction) – Example

 Element-wise and cross-rank operation

 rbuf[i] = sbuf0[i] op sbuf1[i] op sbuf2[i] op … sbufnranks-1[i]

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

58 62 66 70 74 78 82 86 90

        

        

        

 = MPI_SUM

sbuf0[]

sbuf1[]

sbuf2[]

sbuf3[]

rbuf[]



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Allreduce (many-to-many data reduction)

 Reduction result available on all ranks:

 Logically equivalent to MPI_Reduce + MPI_Bcast with the same root

MPI_Allreduce (void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Advantages of Collective Operations

 Collective operations implement common SPMD patterns portably

 Platform/Vendor-specific implementation, but standard behaviour

 Example: Broadcast

 Naïve: root sends separate message to every other rank, O(#ranks)

 Smart: tree-based hierarchical communication, O(log(#ranks))

 Genius: pipelined segmented transport, O(1)

TimeRank 0

TimeRank 4

TimeRank 1

TimeRank 2

TimeRank 3

TimeRank 5

SmartNaïve Genius



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Summary: Collective Operations

 All ranks in the communicator must call the MPI collective operation

 Both, data sources and data receivers have to make the same call and supply the same value 

for the root rank where needed

 Observe the significance of each argument

 The sequence of collective calls must be the same on all ranks

 MPI_Barrier is the only explicitly synchronising MPI collective

 Some may synchronize implicitly (e.g., Allgather, Allreduce)

 Communication paradigms are independent of each other

 Collective communication does not interfere with point-to-point communication on the same 

communicator


