& HPC.NRW

MPI in Small Bites

HPC.NRW Competence Network

THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

Blocking Collective Communication

HPC.NRW Competence Network

MPI iIn Small Bites

() ®O INNOVATION DURCH KOOPERATION.

Collective Operations HPC.NRW

— Involve all ranks in a given communicator
— Create a smaller communicator for collective communication in a subgroup

— All ranks must call the same MPI operation to succeed
— There should be only one call per MPI rank (i.e., not per thread)

— Process synchronization behaviour is implementation specific
— The MPI standard may allow for early return on some ranks

Report

— Implement common group-communication patterns
— Usually tuned to deliver the best system performance
— Do not reinvent the wheel!

MPI in Small Bites
BY SA

INNOVATION THROUGH COOPERATION.

Barrier Synchronisation HPC.NRW

— The only explicit synchronisation operation in MPI: | MPI_Barrier (MPI_Comm comm)

Rank O MPI_Barrier Time

tso

Rank 1 MPI Barrier ' Time

\u/a

Rank 2 MPI_Barrier

Time

tSZ tE'Z

maX(tS,oi ts1; ts,z) < min(tg o; tg1; tg 2)

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Barrier Synchronisation HPC.NRW

— Useful for benchmarking
— Always synchronise before taking time measurements

Elapsed time as measured by the first rank

Parallel work >

— Huge discrepancy between the actual work time and the measurement

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Barrier Synchronisation HPC.NRW

— Useful for benchmarking
— Always synchronise before taking time measurements

Elapsed time as measured by the first rank

MPI_Init MPI_Barrier —>
MPI_Init VEINCETESE Parallel work H—>

MPI_Init MPI_Barrier : —

— Huge discrepancy between the actual work time and the measurement

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Broadcast (one-to-many data replication) HPC.NRW

— Replicate data from one rank to all other ranks: /m

MPI_Bcast (void *data, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

— data: send buffer at root rank; receive buffer on all other ranks o
— count: number of data elements

— datatype: elements’ datatype

— root: source rank; all ranks must specify the same value

— comm: communicator

— On all ranks but root, data is an output argument
— On rank root, data is an input argument
— Type signatures must match across all ranks (= Datatypes)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Broadcast (one-to-many data replication) HPC.NRW

— Replicate data from one rank to all other ranks:

MPI_Bcast (void *data, int count, MPI_Datatype dtype,
int root, MPI_Comm comm)

/ data) / data)
7)) A 9]
Z% - Broadcast Z‘—E %
I Ay
Ag

\ _/ \ _/

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Broadcast (one-to-many data replication) - Wrong usage HPC.NRW

— Replicate data from one rank to all other ranks:

MPI_Bcast (void *data, int count, MPI_Datatype dtype,
int root, MPI_Comm comm)

— Example: int ival;
if (rank == 0)
ival = read_int_from_user();

MPI_Bcast(&ival, 1, MPI_INT, ©, MPI_COMM_WORLD);

// WRONG USAGE!
if (rank == 0) {
ival = read_int_from_user();
MPI_Bcast(&ival, 1, MPI_INT, ©, MPI_COMM_WORLD);

}
// The other ranks do not call MPI_Bcast -> Deadlock

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Broadcast (one-to-many data replication) — Naive Implementation HPC.NRW

void broadcast (void *data, int count, MPI_Type dtype,
int root, MPI_Comm comm)

{

int rank, nprocs, i;

MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &nprocs);
if (rank == root) {

for (i = ©; 1 < nprocs; i++)

if (i !'= root)
MPI_Send(data, count, dtype, i, TAG_BCAST, comm);

}
else

MPI_Recv(data, count, dtype, root, TAG_BCAST, comm,

MPI_STATUS_IGNORE);

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Scatter (one-to-many data distribution) HPC.NRW

— Distribute chunks of data from one rank to all ranks:

MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvWype,
int root, MPI_Comm comm)

Significant at root
rank only

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Scatter (one-to-many data distribution) HPC.NRW

— Distribute chunks of data from one rank to all ranks:

MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

— sendbuf must be large enough in order to supply sendcount elements of data to each
rank in the communicator

— Data chunks are taken in increasing rank order following
— root also sends one data chunk to itself
— Type signatures of must match across all ranks (= Datatypes)

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Scatter (one-to-many data distribution) HPC.NRW

— Distribute chunks of data from one rank to all ranks:

MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

/ sendbuf) / recvbuf)

ol Jo TN g| la

S Scatter S

=) ||
A
A

\ _/ \ _/

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Scatter (one-to-many data distribution) — Example HPC.NRW

— Distribute chunks of data from one rank to all ranks:

MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,

int root, MPI_Comm comm)

— sendbuf is only accessed on the root rank
— recvbuf is written into in all ranks

— Example: int bigdata[100]; // 10x10 elements
int localdata[10];

MPI_Scatter(bigdata, 10, MPI_INT, // send buffer, root only
localdata, 10, MPI_INT, // receive buffer

®, MPI_COMM_WORLD);

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Gather (many-to-one data distribution) HPC.NRW

— Collect chunks of data from all ranks in one place:

MPI_Gather (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,

int root, MPI_Comm comm) ‘K\\\\\\\\\~
— The inverse operation to MPI_Scatter

— recvbuf must be large enough to hold recvcount elements from Significant at root
each rank rank only

— root also receives one data chunk from itself
— Data chunks are stored in increasing order of the sender’s rank
— Type signature of sendcount and sendtype must match recvcount and recvtype

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Gather (many-to-one data distribution)

k8 HPC.NRW

— Collect chunks of data from all ranks in one place:

MPI_Gather (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,

MPI in Small Bites
BY SA

int root, MPI_Comm comm)

Gather

E——)

/
2
-
i

\v

recvbuf)

Ao

NG 0,

J

INNOVATION THROUGH COOPERATION.

Allgather (many-to-many data distribution) HPC.NRW

— Collect chunks of data from all ranks in all ranks:

MPI_Allgather (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

— No root rank — all ranks receive a copy of the gathered data

— Each rank also receives one data chunk from itself

— Data chunks are stored in increasing order of sender’s rank

— Type signatures of must match across all ranks (= Datatypes)

— Logically equivalent to MPI_Gather + MPI_Bcast, but potentially more efficient

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Allgather (many-to-many data distribution) HPC.NRW

— Collect chunks of data from all ranks in all ranks:

MPI_Allgather (void *sendbuf, int sendcount, MPI_Datatype sendtype,

void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

/ sendbuf) / recvbuf)

0l lA v
== <
5:5 B, Gather to All ch
Co
Dy

\ J \ _/

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

All-to-All (many-to-many data distribution) HPC.NRW

— Combined scatter and gather operation:

MPI_Alltoall (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

— Each rank distributes its sendbuf to every rank in the communicator (including itself)
— Data chunks are read in increasing order of the receiver’s rank

— Data chunks are stored in increasing order of the sender’s rank

— Almost equivalent to multiple MPI_Scatter + MPIl_Gather

MPI in Small Bites INNOVATION THROUGH COOPERATION.

- ___
All-to-All (many-to-many data distribution) HPC.NRW

— Combined scatter and gather operation:

MPI_Alltoall (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

/ sendbuf / recvbuf >\

All-to-All

E—)

Ranks

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Reduce (many-to-one data reduction) HPC.NRW

— Perform an arithmetic reduction operation while gathering data

sendbuf:
recvbuf:
count/datatype:
op:

root:

comm:

MPI_Reduce (void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI _Op op, int root, MPI_Comm comm)

data to be reduced
location for the result(s) (significant at root only)
type signature of data
reduction operation handle
destination rank
communicator

— Result is computed in- or out-of-order depending on the operation:
— All predefined operations are associative and commutative
— Beware of non-commutative effects on floats

MPI in Small Bites
BY SA

INNOVATION THROUGH COOPERATION.

Reduction Operators HPC.NRW

— Some predefined operation handles:

MPI_Op Result value

MPI_MAX Maximum value

MPI_MIN Minimum value
MPI_SUM Sum of all values
MPI_PROD Product of all values
MPI_LAND Logical AND of all values
MPI_BAND Bit-wise AND of all values
MPI_LOR Logical OR of all values

— User-define operators possible (not covered here)

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

- ___
Reduce (many-to-one data reduction) - Example HPC.NRW

— Element-wise and cross-rank operation
— rbuf[i] = sbuf,[i] op sbuf,[i] op sbuf,[i] op .. sbuf . ..1[1]

sbuf,[] 1 2 3 4 5 6 7 8
® ® ® ® ® ® ® ®
sbuf [] 10 | 12 | 12 | 13 | 14 | 15 | 16 | 17 | 18

® ® ® ® ® ® ® ® ®
sbuf,[1 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27
® ® ® ® ® ® ® ® ®
sbufs[] | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36

111111111

rbuf[] 58 62 66 70 74 /8 82 86 90

X |©

® = MPI_SUM
INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

Allreduce (many-to-many data reduction) HPC.NRW

— Reduction result available on all ranks:

MPI_Allreduce (void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

— Logically equivalent to MPI_Reduce + MPI_Bcast with the same root

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

- ___
Advantages of Collective Operations HPC.NRW

— Collective operations implement common SPMD patterns portably
— Platform/Vendor-specific implementation, but standard behaviour
— Example: Broadcast

— Nalive: root sends separate message to every other rank, O(#ranks)
— Smart: tree-based hierarchical communication, O(log(#ranks))
— Genius: pipelined segmented transport, O(1)
Rank O Naive Smart Genius Time

Rank 1 “"_"_ Time
rank2 4l W Time
Rank 3 || I | Time
Rank 4 | Time
Rank 5 __ Time

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Summary: Collective Operations HPC.NRW

— All ranks in the communicator must call the MPI collective operation

— Both, data sources and data receivers have to make the same call and supply the same value
for the root rank where needed

— Observe the significance of each argument
— The sequence of collective calls must be the same on all ranks

— MPI_Barrier is the only explicitly synchronising MPI collective
— Some may synchronize implicitly (e.g., Allgather, Allreduce)

— Communication paradigms are independent of each other

— Collective communication does not interfere with point-to-point communication on the same
communicator

INNOVATION THROUGH COOPERATION.

MPI in Small Bites
BY SA

