
Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

1

Programming OpenMP

Christian Terboven

Worksharing

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

2

• If only the parallel construct is used, each thread executes the Structured Block.
• Program Speedup: Worksharing
• OpenMP‘s most common Worksharing construct: for

– Distribution of loop iterations over all threads in a Team.
– Scheduling of the distribution can be influenced.

• Loops often account for most of a program‘s runtime!

For Worksharing

C/C++
int i;
#pragma omp for
for (i = 0; i < 100; i++)
{

a[i] = b[i] + c[i];
}

Fortran
INTEGER :: i
!$omp do
DO i = 0, 99

a[i] = b[i] + c[i]
END DO

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

3

Worksharing illustrated

do i = 0, 99
 a(i) = b(i) + c(i)
end do

do i = 0, 24
 a(i) = b(i) + c(i)
end do

do i = 25, 49
 a(i) = b(i) + c(i)
end do

do i = 50, 74
 a(i) = b(i) + c(i)
end do

do i = 75, 99
 a(i) = b(i) + c(i)
end do

MemoryPseudo-Code
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

4

• OpenMP barrier (implicit or explicit)
– Threads wait until all threads of the current Team have reached the barrier

• All worksharing constructs contain an implicit barrier at the end

The Barrier Construct

C/C++

#pragma omp barrier

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

5

• The single construct specifies that the enclosed structured block is executed by only on thread of the
team.
– It is up to the runtime which thread that is.

• Useful for:
– I/O
– Memory allocation and deallocation, etc. (in general: setup work)
– Implementation of the single-creator parallel-executor pattern as we will see later…

The Single Construct

C/C++
#pragma omp single [clause]
... structured block ...

Fortran
!$omp single [clause]
... structured block ...
!$omp end single

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

6

• The master construct specifies that the enclosed structured block is executed only by the master thread of
a team.
• Replacement: see the masked construct later

• Note: The master construct is no worksharing construct and does not contain an implicit barrier at the end.

The Master Construct (will be deprecated in OpenMP 6.0)

C/C++
#pragma omp master[clause]
... structured block ...

Fortran
!$omp master[clause]
... structured block ...
!$omp end master

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

7

Vector Addition

Demo

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

8

• for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

– schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

– schedule(dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

– schedule(guided [, chunk]): Similar to dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

• Default is schedule(static).

Influencing the For Loop Scheduling / 1

OpenMP Tutorial
Members of the OpenMP Language Committee

9

Influencing the For Loop Scheduling / 2

n Static Schedule
à schedule(static [, chunk])

à Decomposition

depending on chunksize

à Equal parts of size ‘chunksize’

distributed in round-robin

fashion

n Pros?
à No/low runtime overhead

n Cons?
à

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

10

• Dynamic schedule
– schedule(dynamic [, chunk])

– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

• Pros ?
– Workload distribution

• Cons?
– Runtime Overhead
– Chunk size essential for performance
– No NUMA optimizations possible

Influencing the For Loop Scheduling / 3

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

11

• Can all loops be parallelized with for-constructs? No!
– Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent. BUT:

This test alone is not sufficient:

• Data Race: If between two synchronization points at least one thread writes to a memory location from
which at least one other thread reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++
int i, int s = 0;

#pragma omp parallel for
for (i = 0; i < 100; i++)
{

s = s + a[i];
}

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

12

• A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

• Do you think this solution scales well?

Synchronization: Critical Region

C/C++
#pragma omp critical (name)
{

... structured block ...
}

C/C++
int i, s = 0;
#pragma omp parallel for
for (i = 0; i < 100; i++)
{

#pragma omp critical
{ s = s + a[i]; }

}

