
1 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Programming OpenMP

Christian Terboven

Tasking Model

2 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Tasking Overview

3 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Tasks are work units whose execution
à may be deferred or…

à … can be executed immediately

n Tasks are composed of
à code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

n Tasks are created…
… when reaching a parallel region à implicit tasks are created (per thread)

… when encountering a task construct à explicit task is created

… when encountering a taskloop construct à explicit tasks per chunk are created

… when encountering a target construct à target task is created

What is a task in OpenMP?

4 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Supports unstructured parallelism
à unbounded loops

à recursive functions

n Several scenarios are possible:
à single creator, multiple creators, nested tasks (tasks & WS)

n All threads in the team are candidates to execute tasks

Tasking execution model

while (<expr>) {
...

}

void myfunc(<args>)
{

...; myfunc(<newargs>); ...;
}

Task pool

Parallel Team

#pragma omp parallel
#pragma omp master
while (elem != NULL) {

#pragma omp task
compute(elem);

elem = elem->next;
}

n Example (unstructured parallelism)

5 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

!$omp task [clause[[,] clause]...]
…structured-block…
!$omp end task

Synchronization

Cutoff Strategies

Data Environment

n Deferring (or not) a unit of work (executable for any member of the team)

n Where clause is one of:

The task construct

à if(scalar-expression)

à mergeable

à final(scalar-expression)

à depend(dep-type: list)

à untied

à priority(priority-value)

à affinity(list)

à private(list)

à firstprivate(list)

à shared(list)

à default(shared | none)

à in_reduction(r-id: list)

à allocate([allocator:] list)

à detach(event-handler)

#pragma omp task [clause[[,] clause]...]
{structured-block}

Task Scheduling
Miscellaneous

6 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Tasks are tied by default (when no untied clause present)
à tied tasks are executed always by the same thread (not necessarily creator)

à tied tasks may run into performance problems

n Programmers may specify tasks to be untied (relax scheduling)

à can potentially switch to any thread (of the team)

à bad mix with thread based features: thread-id, threadprivate, critical regions...

à gives the runtime more flexibility to schedule tasks

à but most of OpenMP implementations doesn’t “honor” untied L

Task scheduling: tied vs untied tasks

#pragma omp task untied
{structured-block}

7 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Task scheduling points (and the taskyield directive)
à tasks can be suspended/resumed at TSPs à some additional constraints to avoid deadlock problems

à implicit scheduling points (creation, synchronization, ...)

à explicit scheduling point: the taskyield directive

n Scheduling [tied/untied] tasks: example

Task scheduling: taskyield directive

#pragma omp taskyield

#pragma omp parallel
#pragma omp single
{

#pragma omp task
{

foo();
#pragma omp taskyield
bar()

}
}

single

foo()

bar()

untied:

single

foo() bar()tied:

untied

(default)

8 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n The taskwait directive (shallow task synchronization)
à It is a stand-alone directive

à wait on the completion of child tasks of the current task; just direct children, not all descendant tasks;

includes an implicit task scheduling point (TSP)

Task synchronization: taskwait directive

#pragma omp taskwait

#pragma omp parallel
#pragma omp single
{

#pragma omp task
{

#pragma omp task
{ … }
#pragma omp task
{ … …}
#pragma omp taskwait

}
} // implicit barrier will wait for C.x

C.1 C.2

wait for…

A

: A

{ … #C.1; #C.2; …}

B C
: B

: C

9 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n OpenMP barrier (implicit or explicit)
à All tasks created by any thread of the current team are guaranteed to be completed at barrier exit

à And all other implicit barriers at parallel, sections, for, single, etc…

Task synchronization: barrier semantics

#pragma omp barrier

10 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n The taskgroup construct (deep task synchronization)
à attached to a structured block; completion of all descendants of the current task; TSP at the end

à where clause (could only be): reduction(reduction-identifier: list-items)

Task synchronization: taskgroup construct

#pragma omp taskgroup [clause[[,] clause]...]
{structured-block}

#pragma omp parallel
#pragma omp single
{

#pragma omp taskgroup
{

#pragma omp task
{ … }
#pragma omp task
{ … #C.1; #C.2; …}

} // end of taskgroup
}

wait for…

B C

C.1 C.2

A

:B

:C

: A

11 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Data Environment

12 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Explicit data-sharing clauses (shared, private and firstprivate)

n If default clause present, what the clause says
à shared: data which is not explicitly included in any other data sharing clause will be shared

à none: compiler will issue an error if the attribute is not explicitly set by the programmer (very useful!!!)

Explicit data-sharing clauses

#pragma omp task shared(a)
{
// Scope of a: shared

}

#pragma omp task private(b)
{
// Scope of b: private

}

#pragma omp task firstprivate(c)
{
// Scope of c: firstprivate

}

#pragma omp task default(shared)
{
// Scope of all the references, not explicitly
// included in any other data sharing clause,
// and with no pre-determined attribute: shared
}

#pragma omp task default(none)
{
// Compiler will force to specify the scope for
// every single variable referenced in the context
}

Hint: Use default(none) to be forced to think about every
variable if you do not see clearly.

13 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n threadprivate variables are threadprivate (1)
n dynamic storage duration objects are shared (malloc, new,…) (2)
n static data members are shared (3)
n variables declared inside the construct

àstatic storage duration variables are shared (4)

àautomatic storage duration variables are private (5)
n the loop iteration variable(s)…

Pre-determined data-sharing attributes

void foo(void){
static int s = MN;

}

#pragma omp task
{

foo(); // s@foo(): shared
}

int A[SIZE];
#pragma omp threadprivate(A)

// ...
#pragma omp task
{
// A: threadprivate

}

int *p;

p = malloc(sizeof(float)*SIZE);

#pragma omp task
{

// *p: shared
}

#pragma omp task
{

int x = MN;
// Scope of x: private

}

#pragma omp task
{

static int y;
// Scope of y: shared

}

1 2 3

4

5

14 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Implicit data-sharing attributes (in-practice)

int a = 1;
void foo() {

int b = 2, c = 3;
#pragma omp parallel private(b)
{

int d = 4;
#pragma omp task
{

int e = 5;
// Scope of a: shared
// Scope of b: firstprivate
// Scope of c: shared
// Scope of d: firstprivate
// Scope of e: private

}
}

}

n (in-practice) variable values within the task:
à value of a: 1

à value of b: x // undefined (undefined in parallel)

à value of c: 3

à value of d: 4

à value of e: 5

n Implicit data-sharing rules for the task region
à the shared attribute is lexically inherited

à in any other case the variable is firstprivate

à Pre-determined rules (could not change)

à Explicit data-sharing clauses (+ default)

à Implicit data-sharing rules

15 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Task reductions (using taskgroup)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp taskgroup task_reduction(+: res)
{ // [1]

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [2]

res += node->value;
}
node = node->next;

}
} // [3]

}
}

n Reduction operation
à perform some forms of recurrence calculations

à associative and commutative operators
n The (taskgroup) scoping reduction clause

à Register a new reduction at [1]

à Computes the final result after [3]
n The (task) in_reduction clause [participating]

à Task participates in a reduction operation [2]

#pragma omp task in_reduction(op: list)
{structured-block}

#pragma omp taskgroup task_reduction(op: list)
{structured-block}

16 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Task reductions (+ modifiers)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel reduction(task,+: res)
{ // [1][2]

#pragma omp single
{

#pragma omp taskgroup
{

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [3]

res += node->value;
}
node = node->next;

}
}

}
} // [4]

n Reduction modifiers
à Former reductions clauses have been extended

à task modifier allows to express task reductions

à Registering a new task reduction [1]

à Implicit tasks participate in the reduction [2]

à Compute final result after [4]
n The (task) in_reduction clause [participating]

à Task participates in a reduction operation [3]

#pragma omp task in_reduction(op: list)
{structured-block}

Intel compiler 2021 still not able to compile!
Can be compiled with Clang 11!

17 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Tasking illustrated

18 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Only one Task / Thread enters fib() from main(), it is responsible for
creating the two initial work tasks

n Taskwait is required, as otherwise x and y would get lost

Fibonacci illustrated
14 int fib(int n) {
15 if (n < 2) return n;
16 int x, y;
17 #pragma omp task shared(x)
18 {
19 x = fib(n - 1);
20 }
21 #pragma omp task shared(y)
22 {
23 y = fib(n - 2);
24 }
25 #pragma omp taskwait
26 return x+y;
27 }

1 int main(int argc,
2 char* argv[])
3 {
4 [...]
5 #pragma omp parallel
6 {
7 #pragma omp single
8 {
9 fib(input);
10 }
11 }
12 [...]
13 }

19 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n T1 enters fib(4)

fib(4)
n T1 creates tasks for

fib(3) and fib(2)

Task Queue

fib(3) fib(2)

n T1 and T2 execute tasks
from the queue

fib(3) fib(2)n T1 and T2 create 4 new
tasks

fib(2) fib(1) fib(1) fib(0)

n T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)

20 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n T1 enters fib(4)

fib(4)
n T1 creates tasks for

fib(3) and fib(2)
n T1 and T2 execute tasks

from the queue
fib(3) fib(2)n T1 and T2 create 4 new

tasks
n T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)n …

fib(1) fib(0)

