OpenMP
Programming OpenMP

Cut-off strategies

Christian Terboven RWTH

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

OpenMP

Example: Sudoku revisited

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Parallel Brute-force Sudoku

OpenMP

B This parallel algorithm finds all valid solutions

6

8

11

15

14

16

15

11

16

14

12

13

12

16

14

15

10

2

16

11

15

10

15

11

10

12

12

13

O

11

S

12

10

16

10

11

13

10

15

11

16

9

16

1

13

11

16

16

14

15

13

11

10

15

16

13

1

8

OO~

11

14

3

16

10

12

Programming in OpenMP

Christian Terboven & Members of the OpenMP Language Committee

B (1) Search an empty fie first call contained in a

#fpragma omp parallel
fpragma omp single
such that one tasks starts the
execution of the algorithm

m (2) Try all numbers:
M (2 a) Check Sudoku
® [f invalid: skip

B If valid: Go to ne; #pragma omp task
field needs to work on a new copy

of the Sudoku board

#fpragma omp taskwait

B Wait for completion wait for all child tasks

Performance Evaluation OpenMP

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

8 4,0

7 3,5

6 3,0
©5 2,5
x o
k‘_'O >
_ 4 20 O
e}]
Y Q.
g 3 1,5 <
2,
(]
£ 2 1,0
E
z 1 0,5

0 0,0

1 2 3 4 5 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#threads
mm Intel C++ 13.1, scatter binding —e—speedup: Intel C++ 13.1, scatter binding

4 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Performance Analysis OpenMP

Event-based profiling provides a , . ,
, P &P Tracing provides more details:
gOOd OVerVIeW : 6.80 s 68.55 6?05 6?55 7.0;05 705';5’= 7.1;05 7.1;55

Master thread

B metric tree E calltree , Flat view ’ | system tree ‘ Box (M | T————
5.088038e7 Visits ([| | B [0 task_root = | & [- machine Linux (- T§6Tp taskWalt @SUAOKUCE

103.547101 Time (|| EF [1.077944e7 1$omp tas | | B [- node cluster-phi.rz.
[J 0.000000 Minimum E [1.077944e7 !$omp B [- Process

vl 6

7.165572 Maximun [1.077936e7 I$omp — [1.357093e6 M
127.000000 max a 80 I$omp atomic @ — [1.359940e6 O

80 !$omp atomic @sudok — [1.316294e6 Of|
[1.854197e7 !$omp paralle| - [1.289513e6 Of |~
17 I$omp parallel @sudok |~

O WWNOUNWN

=

Duration: 0.16 sec

— [1.318732e6 O
— [1.384539e6 O
— [1.384849e6 O
L [1.368480e6 O

Every thread is executing ~1.3m tasks... .
m Call tree ‘ Flat view ‘k‘ System tree . Box <’ ’ T eme emr ems e 7"om§"§' R TR

5.0 5.85s (EE B35 7:00% 7.95¢ 705 L3ss

Master thread :
| | 1 11 “ i taskwait @sudoku-cppr128 ~ = = =

5.088038¢7 Visits ([~] | B} (] 0.000000 task_root EF [- machine Lmux Master thread
103.547101 Time (| 46.229420 I$omp task | & [- node cluster-phi.rz. a7 § "
[0.000000 Minimum 0.000051 fomp atomic @ & O - Process vl 48 + H— —.
7.165572 Maximun 57.317553 I$omp parallel - [5.787572 Mas gz s r—
127.000000 max a 0.000076 !$omp parallel @ - [5.767037 OM
- [5.770846 OM
= — (& 6.793451 OM Master thread
| — [5.794502 OM o mE Im |lﬂll"ll me 1 I
— [5.775753 OM 80 5|1 ||||“ L[] 'V”‘I‘I‘H"WU" [[l.LLI] ! | 11 !‘lll! e | H !

- [5.770343 OM
L [5.769917 OM

vi82 = T W TN phw f T
- Y Duration: 2.2 us

... in ~5.7 seconds. Tasks get much smaller
=> average duration of a task is ~4.4 us down the call-stack.

5 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Performance Analysis

Event-based profiling provides a

good overview :
B metric tree Call tree » Flat view ‘_ m [Box <] ‘

5.088038e7 Visits (| | &+ [0 task_root | & 0O - machine Linux
103.547101 Time (& [1.077944e7 |$omp tas | | B [- node cluster-phi.rz.F
[J 0.000000 Minimum [1.077944e7 $omp B [- Process
7.165572 Maximun [1.077936e7 Ifomp [0 1.357093e6 M:
127.000000 max a 80 I$omp atomic [1.359940e6 Of
80 !$omp atomic @sudok
[1.854197e7 I$omp paralle|

[0 1.316294e6 Of
17 I$omp parallel @sudok|

ULE

[1.289513e6 OI
[1.318732e6 OI

b

Every thread i ° if-clause, final-clause, mergeable-clause
W natlvely in your program code

5.088038e7 Visits =[] o. 000000 task_root

103.547101 Time (-' (& 46.229420 I$omp task
[J 0.000000 Minimum 0.000051 I$omp atomic @
7.165572 Maximun 57.317553 I$omp parallel
127.000000 max a 0.000076 !$omp parallel €

&} [- machine Llnux
& O - node cluster-phi.rz.

& O - Process
- [5.787572 Mas
- [5.767037 OM
- [5.770846 OM
- [5.793451 OM
- [5.794502 OM
- [5.775753 OM
- [5.770343 OM
L [5.769917 OM

it

il
gl

... iIn ~¥5.7 seconds.
=> average duration of a task is ~4.4 us

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

If you have enough parallelism, stop creating more tasks!!

OpenMP

Tracing provides more details:

6.80s 6.855 6.90's 6.955 7.00's 7.05s 7.10s 7.15s

Master thread : ; 5
1 somp parallel @sudoku cpp:174

N

W

vl 6

=
CWwNO VAW

= Duration: 0.16 sec

; 7.05s 7.10s 7.15s
T ——
T
7.05s 7.10s 7.15s

,.u:JS

Master thread

, ' HE -y H -IF-— FWHHI—
vl 48 @ _ — T I-IIHI-

B Duratlon O 001 sec

Master thread

lml
o il

‘IIHII‘ 'U”II!”WUII LI
Il [

I
I H] |\||ll

l\‘ml \ :]
i1
i |

IWHII\I"E
IN

Duratlon 2.2 us
Tasks get much smaller
down the call-stack.

Performance Evaluation (with cutoff)

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding mmm Inte| C++ 13.1, scatter binding, cutoff
=f=speedup: Intel G++ 13.1, scatter binding =3e=speedup: Intel C++ 13.1, scatter binding, cutoff
8
7
3
x 6
©
—
o5
%)
S 4
£
= 3
c
S
)
+ 1
1
0 I I I I I I | | |
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

#threads

18

16

Speedup

OpenMP

OpenMP

Improving Tasking Performance:
Cutoff clauses and strategies

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

The if clause OpenMP

B Rule of thumb: the 1 f (expression) clause as a “switch off” mechanism

- Allows lightweight implementations of task creation and execution but it reduces the parallelism

B |f the expression of the if clause evaluates to false

- the encountering task is suspended int foo(int x) {
printf (“entering foo function\n”);
- the new task is executed immediately (task int res = 0;
#fpragma omp task shared(res) if(false)
dependences are respected!!) {

res += Xx;

- the encountering task resumes its execution }
printf (“leaving foo function\n”);

once the new task is completed)

: S
S This is known as undeferred task Really useful to debug tasking applications!

B Evenifthe expression is false, data-sharing clauses are honored

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

The £inal clause OpenMP

B The final (expression) clause

- Nested tasks / recursive applications

—> allows to avoid future task creation - reduces overhead but also reduces parallelism

B |f the expression of the final clause evaluates to true

- The new task is created and executed normally but in its context all tasks will be executed immediately

by the same thread (included tasks)
e == false e == true
#fpragma omp task final (e) ~

{ '.0 “‘
#pragma omp task ..’. "“ E
{ . 1} 2 / r____J _____ :
#pragma omp task O Q :Eode B; |
Fpragma omp taskwait > | code_ci; |
} & ".‘ | code_c2; |
i |
LR]
B Data-sharing clauses are honored too! OO

Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

I!HI

The mergeable clause OpenMP

B The mergeable clause

— Optimization: get rid of “data-sharing clauses are honored”

— This optimization can only be applied in undeferred or included tasks

B A Task that is annotated with the mergeable clause is called a mergeable task

- Atask that may be a merged task if it is an undeferred task or an included task

B A merged task is:

— Atask for which the data environment (inclusive of ICVs) may be the same as that of

its generating task region

B A good implementation could execute a merged task without adding any OpenMP-

related overhead Unfortunately, there are no OpenMP

commercial implementations taking
advantage of final neither mergeable =(
Programming in OpenMP

Christian Terboven & Members of the OpenMP Language Committee

