
1 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Programming OpenMP

Christian Terboven

Cut-off strategies

2 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Example: Sudoku revisited

3 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n This parallel algorithm finds all valid solutions

Parallel Brute-force Sudoku

n (1) Search an empty field

n (2) Try all numbers:
n (2 a) Check Sudoku

n If invalid: skip
n If valid: Go to next

field

n Wait for completion

first call contained in a
#pragma omp parallel
#pragma omp single
such that one tasks starts the
execution of the algorithm

#pragma omp task
needs to work on a new copy
of the Sudoku board

#pragma omp taskwait
wait for all child tasks

4 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Performance Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sp
ee

du
p

Ru
nt

im
e

[s
ec

] f
or

 1
6x

16

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

5 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Performance Analysis

Duration: 0.16 sec

Duration: 0.047 sec

Event-based profiling provides a
good overview :

Every thread is executing ~1.3m tasks…

… in ~5.7 seconds.
=> average duration of a task is ~4.4 μs

Tracing provides more details:

Duration: 0.001 sec

Duration: 2.2 μs

Tasks get much smaller
down the call-stack.

lvl 6

lvl 12

lvl 48

lvl 82

6 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Performance Analysis

Duration: 0.16 sec

Duration: 0.047 sec

Event-based profiling provides a
good overview :

Every thread is executing ~1.3m tasks…

… in ~5.7 seconds.
=> average duration of a task is ~4.4 μs

Tracing provides more details:

Duration: 0.001 sec

Duration: 2.2 μs

Tasks get much smaller
down the call-stack.

lvl 6

lvl 12

lvl 48

lvl 82

If you have enough parallelism, stop creating more tasks!!
• if-clause, final-clause, mergeable-clause
• natively in your program code

7 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Performance Evaluation (with cutoff)

0

2

4

6

8

10

12

14

16

18

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sp
ee

du
p

Ru
nt

im
e

[s
ec

] f
or

 1
6x

16

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding Intel C++ 13.1, scatter binding, cutoff

speedup: Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding, cutoff

8 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Improving Tasking Performance:
Cutoff clauses and strategies

9 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Rule of thumb: the if(expression)clause as a “switch off” mechanism
à Allows lightweight implementations of task creation and execution but it reduces the parallelism

n If the expression of the if clause evaluates to false
à the encountering task is suspended

à the new task is executed immediately (task

dependences are respected!!)

à the encountering task resumes its execution

once the new task is completed

à This is known as undeferred task

n Even if the expression is false, data-sharing clauses are honored

The if clause

int foo(int x) {
 printf(“entering foo function\n”);
 int res = 0;
 #pragma omp task shared(res) if(false)
 {
 res += x;
 }
 printf(“leaving foo function\n”);
}

Really useful to debug tasking applications!

10 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n The final(expression) clause
à Nested tasks / recursive applications

à allows to avoid future task creation à reduces overhead but also reduces parallelism

n If the expression of the final clause evaluates to true
à The new task is created and executed normally but in its context all tasks will be executed immediately

by the same thread (included tasks)

n Data-sharing clauses are honored too!

The final clause

A

B C

C.1 C.2

e == false e == true A

…
Code_B;
Code_C;
 code_c1;
 code_c2;
...

#pragma omp task final(e)
{
 #pragma omp task
 { … }
 #pragma omp task
 { … #C.1; #C.2 … }
 #pragma omp taskwait
}

11 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n The mergeable clause
à Optimization: get rid of “data-sharing clauses are honored”

à This optimization can only be applied in undeferred or included tasks

n A Task that is annotated with the mergeable clause is called a mergeable task
à A task that may be a merged task if it is an undeferred task or an included task

n A merged task is:
à A task for which the data environment (inclusive of ICVs) may be the same as that of

its generating task region

n A good implementation could execute a merged task without adding any OpenMP-
related overhead

The mergeable clause

Unfortunately, there are no OpenMP
commercial implementations taking

advantage of final neither mergeable =(

