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Example: Sudoku revisited
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Parallel Brute-force Sudoku

OpenMP

B This parallel algorithm finds all valid solutions
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B (1) Search an empty fie first call contained in a

#fpragma omp parallel
fpragma omp single
such that one tasks starts the
execution of the algorithm

m (2) Try all numbers:
M (2 a) Check Sudoku
® [f invalid: skip

B If valid: Go to ne; #pragma omp task
field needs to work on a new copy

of the Sudoku board

#fpragma omp taskwait

B Wait for completion wait for all child tasks



Performance Evaluation OpenMP

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz
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#threads
mm Intel C++ 13.1, scatter binding —e—speedup: Intel C++ 13.1, scatter binding
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Performance Analysis OpenMP

Event-based profiling provides a , . ,
, P &P Tracing provides more details:
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... in ~5.7 seconds. Tasks get much smaller
=> average duration of a task is ~4.4 us down the call-stack.
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Performance Analysis

Event-based profiling provides a

good overview :
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... iIn ~¥5.7 seconds.
=> average duration of a task is ~4.4 us
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If you have enough parallelism, stop creating more tasks!!

OpenMP

Tracing provides more details:
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Performance Evaluation (with cutoff)

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding mmm Inte| C++ 13.1, scatter binding, cutoff
=f=speedup: Intel G++ 13.1, scatter binding =3e=speedup: Intel C++ 13.1, scatter binding, cutoff
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Improving Tasking Performance:
Cutoff clauses and strategies
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The if clause OpenMP

B Rule of thumb: the 1 f (expression) clause as a “switch off” mechanism

- Allows lightweight implementations of task creation and execution but it reduces the parallelism

B |f the expression of the if clause evaluates to false

- the encountering task is suspended int foo(int x) {
printf (“entering foo function\n”);
- the new task is executed immediately (task int res = 0;
#fpragma omp task shared(res) if(false)
dependences are respected!!) {

res += Xx;

- the encountering task resumes its execution }
printf (“leaving foo function\n”);

once the new task is completed )

: S
S This is known as undeferred task Really useful to debug tasking applications!

B Evenifthe expression is false, data-sharing clauses are honored
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The £inal clause OpenMP

B The final (expression) clause

- Nested tasks / recursive applications

—> allows to avoid future task creation - reduces overhead but also reduces parallelism

B |f the expression of the final clause evaluates to true

- The new task is created and executed normally but in its context all tasks will be executed immediately

by the same thread (included tasks)
e == false e == true
#fpragma omp task final (e) ~

{ '.0 “‘
#pragma omp task ..’. "“ E
{ . 1} 2 / r____J _____ :
#pragma omp task O Q :Eode B; |
Fpragma omp taskwait > | code_ci; |
} & ".‘ | code_c2; |
i |
LR ]
B Data-sharing clauses are honored too! OO
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The mergeable clause OpenMP

B The mergeable clause

— Optimization: get rid of “data-sharing clauses are honored”

— This optimization can only be applied in undeferred or included tasks

B A Task that is annotated with the mergeable clause is called a mergeable task

- Atask that may be a merged task if it is an undeferred task or an included task

B A merged task is:

— Atask for which the data environment (inclusive of ICVs) may be the same as that of

its generating task region

B A good implementation could execute a merged task without adding any OpenMP-

related overhead Unfortunately, there are no OpenMP

commercial implementations taking
advantage of final neither mergeable =(
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