
1 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Programming OpenMP

Christian Terboven

NUMA

2 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee
2

OpenMP: Memory Access

3 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

double* A;
A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {
A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

How To Distribute The Data ?

4 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Serial code: all array elements are allocated in the memory of the NUMA node closest to the
core executing the initializer thread (first touch)

double* A;
A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {
A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

5 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Important aspect on cc-NUMA systems
àIf not optimal, longer memory access times and hotspots

n Placement comes from the Operating System
àThis is therefore Operating System dependent

n Windows, Linux and Solaris all use the “First Touch” placement policy
by default
àMay be possible to override default (check the docs)

About Data Distribution

6 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Serial code: all array elements are allocated in the memory of the NUMA node closest to the
core executing the initializer thread (first touch)

double* A;
A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {
A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

7 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n First Touch w/ parallel code: all array elements are allocated in the memory of the NUMA
node that contains the core that executes the
thread that initializes the partition

double* A;
A = (double*)

malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for
for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

First Touch Memory Placement

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2] A[N/2] … A[N]

8 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Stream example on 2 socket sytem with Xeon X5675 processors, 12
OpenMP threads:

Serial vs. Parallel Initialization

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s

par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]
b[0,N-1]
c[0,N-1]

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]
b[0,(N/2)-1]
c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]
b[N/2,N-1]
c[N/2,N-1]

9 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Before you design a strategy for thread binding, you should have a basic
understanding of the system topology. Please use one of the following
options on a target machine:
àIntel MPI‘s cpuinfo tool

à cpuinfo

àDelivers information about the number of sockets (= packages) and the mapping of processor

ids to cpu cores that the OS uses.

àhwlocs‘ hwloc-ls tool
à hwloc-ls

àDisplays a graphical representation of the system topology, separated into NUMA nodes, along

with the mapping of processor ids to cpu cores that the OS uses and additional info on caches.

Get Info on the System Topology

10 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Selecting the „right“ binding strategy depends not only on the topology,
but also on application characteristics.
àPutting threads far apart, i.e., on different sockets

àMay improve aggregated memory bandwidth available to application

àMay improve the combined cache size available to your application

àMay decrease performance of synchronization constructs

àPutting threads close together, i.e., on two adjacent cores that possibly share

some caches

àMay improve performance of synchronization constructs

àMay decrease the available memory bandwidth and cache size

Decide for Binding Strategy

11 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Define OpenMP Places
àset of OpenMP threads running on one or more processors

àcan be defined by the user, i.e. OMP_PLACES=cores

n Define a set of OpenMP Thread Affinity Policies
àSPREAD: spread OpenMP threads evenly among the places,

partition the place list

àCLOSE: pack OpenMP threads near master thread

àMASTER: collocate OpenMP thread with master thread

n Goals
àuser has a way to specify where to execute OpenMP threads

à locality between OpenMP threads / less false sharing / memory bandwidth

Places + Binding Policies (1/2)

12 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Assume the following machine:

à 2 sockets, 4 cores per socket, 4 hyper-threads per core
n Abstract names for OMP_PLACES:

à threads: Each place corresponds to a single hardware thread on the target machine.

à cores: Each place corresponds to a single core (having one or more hardware threads) on the target
machine.

à sockets: Each place corresponds to a single socket (consisting of one or more cores) on the target
machine.

à ll_caches: Each place corresponds to a set of cores that share the last level cache.

à numa_domains: Each place corresponds to a set of cores for which their closest memory is: the
same memory; and at a similar distance from the cores.

Places

p0 p1 p2 p3 p4 p5 p6 p7

13 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Example‘s Objective:
àseparate cores for outer loop and near cores for inner loop

n Outer Parallel Region: proc_bind(spread) num_threads(4)
Inner Parallel Region: proc_bind(close) num_threads(4)
àspread creates partition, compact binds threads within respective partition
OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-3):8:4 = cores
#pragma omp parallel proc_bind(spread) num_threads(4)
#pragma omp parallel proc_bind(close) num_threads(4)

n Example
àinitial

àspread 4

àclose 4

Places + Binding Policies (2/2)

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

14 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Assume the following machine:

à2 sockets, 4 cores per socket, 4 hyper-threads per core

n Parallel Region with two threads, one per socket
àOMP_PLACES=sockets

à#pragma omp parallel num_threads(2) proc_bind(spread)

More Examples (1/3)

p0 p1 p2 p3 p4 p5 p6 p7

15 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Assume the following machine:

n Parallel Region with four threads, one per core, but only on the first
socket
àOMP_PLACES=cores

à#pragma omp parallel num_threads(4) proc_bind(close)

More Examples (2/3)

p0 p1 p2 p3 p4 p5 p6 p7

16 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Spread a nested loop first across two sockets, then among the cores
within each socket, only one thread per core
àOMP_PLACES=cores

à#pragma omp parallel num_threads(2) proc_bind(spread)

à#pragma omp parallel num_threads(4) proc_bind(close)

More Examples (3/3)

17 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

17

Working with OpenMP Places

18 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n 1: Query information about binding and a single place of
all places with ids 0 … omp_get_num_places():

n omp_proc_bind_t omp_get_proc_bind(): returns the thread affinity policy
(omp_proc_bind_false, true, master, …)

n int omp_get_num_places(): returns the number of places

n int omp_get_place_num_procs(int place_num): returns the number of
processors in the given place

n void omp_get_place_proc_ids(int place_num, int* ids): returns the
ids of the processors in the given place

Places API (1/2)

19 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n 2: Query information about the place partition:

n int omp_get_place_num(): returns the place number of the place to which the
current thread is bound

n int omp_get_partition_num_places(): returns the number of places in the
current partition

n void omp_get_partition_place_nums(int* pns): returns the list of place
numbers corresponding to the places in the current partition

Places API (2/2)

20 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Simple routine printing the processor ids of the place the calling thread
is bound to:

Places API: Example

void print_binding_info() {
int my_place = omp_get_place_num();
int place_num_procs = omp_get_place_num_procs(my_place);

printf("Place consists of %d processors: ", place_num_procs);

int *place_processors = malloc(sizeof(int) * place_num_procs);
omp_get_place_proc_ids(my_place, place_processors)

for (int i = 0; i < place_num_procs - 1; i++) {
printf("%d ", place_processors[i]);

}
printf("\n");

free(place_processors);
}

21 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Set OMP_DISPLAY_AFFINITY=TRUE
àInstructs the runtime to display formatted affinity information

àExample output for two threads on two physical cores:

àOutput can be formatted with OMP_AFFINITY_FORMAT env var or

corresponding routine

àFormatted affinity information can be printed with

omp_display_affinity(const char* format)

OpenMP 5.0 way to do this

nesting_level= 1, thread_num= 0, thread_affinity= 0,1
nesting_level= 1, thread_num= 1, thread_affinity= 2,3

22 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Example:

àPossible output:

Affinity format specification
t omp_get_team_num()

T omp_get_num_teams()

L omp_get_level()

n omp_get_thread_num()

N omp_get_num_threads()

a omp_get_ancestor_thread_num() at level-1

H hostname

P process identifier

i native thread identifier

A thread affinity: list of processors (cores)

OMP_AFFINITY_FORMAT=“Affinity: %0.3L %.8n %.15{A} %.12H“

Affinity: 001 0 0-1,16-17 host003
Affinity: 001 1 2-3,18-19 host003

23 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

23

A first summary

24 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Everything under control?
n In principle Yes, but only if

àthreads can be bound explicitly,

àdata can be placed well by first-touch, or can be migrated,

àyou focus on a specific platform (= OS + arch) → no portability

n What if the data access pattern changes over time?

n What if you use more than one level of parallelism?

A first summary

25 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n First Touch: Modern operating systems (i.e., Linux >= 2.4) decide for a
physical location of a memory page during the first page fault, when
the page is first „touched“, and put it close to the CPU causing the
page fault.

n Explicit Migration: Selected regions of memory (pages) are moved
from one NUMA node to another via explicit OS syscall.

n Automatic Migration: Limited support in current Linux systems.
àNot made for HPC and disabled on most HPC systems.

NUMA Strategies: Overview

26 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

n Explicit NUMA-aware memory allocation:
àBy carefully touching data by the thread which later uses it

àBy changing the default memory allocation strategy
àLinux: numactl command

àWindows: VirtualAllocExNuma() (limited functionality)

àBy explicit migration of memory pages
àLinux: move_pages()

àWindows: no option

n Example: using numactl to distribute pages round-robin:
à numactl –interleave=all ./a.out

User Control of Memory Affinity

