
Programming in OpenMP
Tim Cramer & Members of the OpenMP Language Committee

1

Programming OpenMP

Christian Terboven

Vectorization (SIMD)

OpenMP Tutorial
Members of the OpenMP Language Committee

2

Vectorization

n SIMD = Single Instruction Multiple Data
à Special hardware instructions to operate on multiple data points at once

à Instructions work on vector registers

à Vector length is hardware dependent

double a[4],b[4],c[4];
…

for(i=0 ; i < 4 ; i++)
{
 a[i]=b[i]+c[i];
}

a[0]

c[0]

b[0]

=

+

Step 1

a[1]

c[1]

b[1]

=

+

Step 2

a[2]

c[2]

b[2]

=

+

Step 3

a[3]

c[3]

b[3]

=

+

Step 4

b[0],b[1]

c[0],c[1]

a[0],a[1]

=

+

b[2],b[3]

c[2],c[3]

a[2],a[3]

=

+

Step 2Step 1

Sequential Vectorized

OpenMP Tutorial
Members of the OpenMP Language Committee

3

Vectorization

n Vector lengths on Intel architectures
à 128 bit: SSE = Streaming SIMD Extensions

à 256 bit: AVX = Advanced Vector Extensions

à 512 bit: AVX-512

2 x double

4 x float

4 x double

8 x float

8 x double

16 x float

OpenMP Tutorial
Members of the OpenMP Language Committee

4

Data Alignment

n Vectorization works best on aligned data structures.

Address: 0 8 16 24 32 40 48 56
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Address: 8 16 24 32 40 48 56 64
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Address: 4 12 20 28 36 44 52 60
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Good alignment

Bad alignment

Very bad alignment

OpenMP Tutorial
Members of the OpenMP Language Committee

5

Approaches to Vectorization

Compiler
auto-vectorization

Explicit Vector Programming
(e.g. with OpenMP)

Inline Assembly
(e.g.)

Assembler Code
(e.g. addps, mulpd, …)

easy

explicit

OpenMP Tutorial
Members of the OpenMP Language Committee

6

Data Dependencies

OpenMP Tutorial
Members of the OpenMP Language Committee

7

n Suppose two statements S1 and S2
n S2 depends on S1, iff S1 must execute before S2

àControl-flow dependence
àData dependence
àDependencies can be carried over between loop iterations

n Important flavors of data dependencies
FLOW ANTI
s1: a = 40 b = 40

 b = 21 s1: a = b + 1
s2: c = a + 2 s2: b = 21

Data Dependencies

OpenMP Tutorial
Members of the OpenMP Language Committee

8

n Dependencies may occur across loop iterations
àLoop-carried dependency

n The following code contains such a dependency:

n Some iterations of the loop have to
complete before the next iteration can run
àSimple trick: Can you reverse the loop w/o getting wrong results?

Loop-Carried Dependencies

void lcd_ex(float* a, float* b, size_t n, float c1, float c2)
{
 size_t i;
 for (i = 0; i < n; i++) {
 a[i] = c1 * a[i + 17] + c2 * b[i];
 }
}

Loop-carried dependency for a[i] and
a[i+17]; distance is 17.

OpenMP Tutorial
Members of the OpenMP Language Committee

9

n Can we parallelize or vectorize the loop?

àParallelization: no
(except for very specific loop schedules)

àVectorization: yes
(iff vector length is shorter than any distance of any dependency)

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) {
 for (int i = 0; i < n; i++) {
 a[i] = c1 * a[i + 17] + c2 * b[i];
} }

Thread 1 Thread 2

OpenMP Tutorial
Members of the OpenMP Language Committee

11

The OpenMP SIMD constructs

OpenMP Tutorial
Members of the OpenMP Language Committee

12

The SIMD construct

n The SIMD construct enables the execution of multiple iterations of the associated loops
concurrently by means of SIMD instructions.

n where clauses are:
à linear(list[:linear-step]), a variable increases linearly in every loop iteration

à aligned(list[:alignment]), specifies that data is aligned

à private(list), as usual

à lastprivate(list) , as usual

à reduction(reduction-identifier:list) , as usual

à collapse(n), collapse loops first, and than apply SIMD instructions

C/C++:
#pragma omp simd [clause(s)]
 for-loops

Fortran:
!$omp simd [clause(s)]
 do-loops
[!$omp end simd]

OpenMP Tutorial
Members of the OpenMP Language Committee

13

The SIMD construct

n The safelen clause allows to specify a distance of loop iterations where no dependencies
occur.

double a[6],b[6];
…

for(i=2 ; i < 6 ; i++)
{
 a[i]=a[i-2]*b[i];
}

a[2]

b[2]

a[0]

=

*

Step 1

a[3]

b[3]

a[1]

=

*

Step 2

a[4]

b[4]

a[2]

=

*

Step 3

a[5]

b[5]

a[3]

=

*

Step 4

a[0],a[1]

b[2],b[3]

a[2],a[3]

=

*

a[2],a[3]

b[4],b[5]

a[4],a[5]

=

*

Step 2Step 1

Sequential Vector length 128-bit

OpenMP Tutorial
Members of the OpenMP Language Committee

14

The SIMD construct

n The safelen clause allows to specify a distance of loop iterations where no dependencies
occur.

n Any vector length smaller than or equal to the length specified by safelen can be chosen for
vectorizaion.

n In contrast to parallel for/do loops the iterations are executed in a specified order.

double a[6],b[6];
…

for(i=2 ; i < 6 ; i++)
{
 a[i]=a[i-2]*b[i];
}

a[0],a[1],a[2],a[3]

b[2],b[3],b[4],b[5]

a[2],a[3],a[4],a[5]

=

*

Step 1

Vector length 256-bit

a[0],a[1]

b[2],b[3]

a[2],a[3]

=

*

a[2],a[3]

b[4],b[5]

a[4],a[5]

=

*

Step 2Step 1

Vector length 128-bit

OpenMP Tutorial
Members of the OpenMP Language Committee

15

The loop SIMD construct

n The loop SIMD construct specifies a loop that can be executed in parallel by all threads and
in SIMD fashion on each thread.

n Loop iterations are first distributed across threads, then each chunk is handled as a SIMD
loop.

n Clauses:
à All clauses from the loop- or SIMD-construct are allowed

à Clauses which are allowed for both constructs are applied twice, once for the threads and once for the

SIMDization.

C/C++:
#pragma omp for simd [clause(s)]
 for-loops

Fortran:
!$omp do simd [clause(s)]
 do-loops
[!$omp end do simd [nowait]]

OpenMP Tutorial
Members of the OpenMP Language Committee

16

The declare SIMD construct

n Function calls in SIMD-loops can lead to bottlenecks, because functions need to be
executed serially.

for(i=0 ; i < N ; i++)
{

 a[i]=b[i]+c[i];

 d[i]=sin(a[i]);

 e[i]=5*d[i];

}

SIMD lanes Solutions:
• avoid or inline

functions
• create functions

which work on
vectors instead of
scalars

OpenMP Tutorial
Members of the OpenMP Language Committee

17

The declare SIMD construct

n Enables the creation of multiple versions of a function or subroutine where one or more
versions can process multiple arguments using SIMD instructions.

n where clauses are:
à simdlen(length), the number of arguments to process simultanously

à linear(list[:linear-step]), a variable increases linearly in every loop iteration

à aligned(argument-list[:alignment]), specifies that data is aligned

à uniform(argument-list), arguments have an invariant value

à inbranch / notinbranch, function is always/never called from within a conditional statement

C/C++:
#pragma omp declare simd [clause(s)]
[#pragma omp declare simd [clause(s)]]
 function definition / declaration

Fortran:
!$omp declare simd (proc_name)[clause(s)]

OpenMP Tutorial
Members of the OpenMP Language Committee

18

Calculating	Pi	with	
numerical	integration	

of:

𝜋 = 6
!

"
4

1 + 𝑥#

File: f.c
#pragma omp declare simd
double f(double x)
{

return (4.0 / (1.0 + x*x));
}
File: pi.c
#pragma omp declare simd
double f(double x);
…
#pragma omp simd linear(i) private(fX)
reduction(+:fSum)
for (i = 0; i < n; i++)
{

fX = fH * ((double)i + 0.5);
fSum += f(fX);

}
return fH * fSum;

OpenMP Tutorial
Members of the OpenMP Language Committee

19

Example: Pi

n Runtime of the benchmark on:
à Westmere CPU with SSE (128-bit vectors)

à Intel Xeon Phi with AVX-512 (512-bit vectors)

Note: Speedup for memory bound applications might be lower on both systems.

Runtime
Westmere

Speedup
Westmere

Runtime
Xeon Phi

Speedup
Xeon Phi

non
vectorized 1.44 sec 1 16.25 sec 1

vectorized 0.72 sec 2 1.82 sec 8.9

