
1 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Programming OpenMP

Christian Terboven
Jannis Klinkenberg

(GPU) Offloading

2 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Motivation

3 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

• Definition: A hardware component to speed up some aspect of the computing workload.

Hardware Accelerators

Computation: Intel 80386DX
CPU with 80387DX Math

Coprocessor

Generic FPGA: A Stratix
IV FPGA from Altera

Encryption: PCI-X Crypto
Accelerator

Digital signal
processor (DSP),

e.g. in music
instruments

4 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

• GPU-Threads
• Scheduled chain of instructions running on a CUDA core (basically a pipeline)
• Light-weight, little creation overhead, fast context switching
• SMT on CPU: few thread share core to better utilize execution units
• GPU threads: up to 32 threads per core to hide memory latencies

• Lots of parallelism needed on GPU to get good performance!

Comparison CPU ó GPU

CPU GPU

20 cores
5000 cores

5 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Comparison CPU ó GPU – Hardware Design

CPU GPU
• Optimized for low latencies
• Huge caches
• Control logic for out-of-order and speculative

execution
• Targets on general-purpose applications

• Optimized for data-parallel throughput
• Architecture tolerant of memory latency
• More transistors dedicated to computation
• Suited for special kind of apps

ALU ALU

ALU ALU

Control

L2

D
R
A
M

ALU

L2

ALU

D
R
A
M

6 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

• 21.1 billion transistors
• 80 streaming multiprocessors (SM)

• Each: 64 (SP) cores, 32 (DP) cores,
8 Tensor cores

• Peak performance
• SP: 15.7 Tflops
• DP: 7.8 Tflops
• Tensor: 125 Tflops

• 32 GB / 16 GB HBM2 memory
• 900 GB/s bandwidth

• 300W thermal design power

GPU architecture: Volta (V100)

Source: https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

GPU

7 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

(GPU) Offloading Concepts

8 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

GPU

5000 cores

• "If you were plowing a field, which would you rather use: Two strong oxen or 1024 chickens?“
Seymour Cray

• Latency vs. throughput-oriented hardware

• GPU design goal: maximize throughput
• A single thread is executed on each processing element simultaneously
• Threads are logically organized like data

Data-Parallel Computing

Data object: e.g. matrix

9 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

• Separate host and device memory
• No coherence between host + device

• Data transfers needed

• Host-directed execution model
• Copy input data from CPU mem. to device mem.
• Execute the device program
• Copy results from device mem. to CPU mem.

Offloading

PCI Bus

CPU
“host”

MEMORY

GPU
“device”

MEMORY

1

2

3
CPU

GPU

GPU

TI
M
E

processing flow (simplified)

We refer to “discrete
GPUs” here.

10 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Offloading in OpenMP

11 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Device Data Environment

Host Device

#pragma omp target \

alloc(…)
1

from(…)
4

to(…)
2

pA

map(alloc:...) \
map(to:...) \

{ ... }
3

map(from:...)

• The map clauses determine how an original variable in a data environment is mapped to a
corresponding variable in a device data environment.

12 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

• The corresponding variable in the device data environment may share storage with the original
variable.

• Writes to the corresponding variable may alter the value of the original variable.

MAP is not necessarily a copy

A

MemoryProcessor X

Cache

A A

Memo
ry X

Shared memory Distributed memory

Processor Y

Cache

A A

Memory XProcessor X

Cache

A

Accelerator
Y

A

13 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

• Mapping Data (can directly be applied to target construct)
• map(to:variable): Copy input variable to device before executing the code region
• map(from:variable): Copy output variable from device after executing the code region
• map(tofrom:variable): Copy variable to device before executing the code region and copy variable

back to the host after executing the code region
• map(alloc:variable): Allocate uninitialized variable on the device

• Construct: target data
• maps data to device without offloading code
• Useful for defining large areas of code that share device data
• Helps reduce the required data transfers

• Construct: target update
• Updates data on the device from the host

Data Management Directives

14 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Example: DAXPY

15 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Example DAXPY: Data Management
void daxpy(int n, double a, double *x, double *y) {
#pragma omp target map(tofrom:y[0:n]) map(to:a,x[0:n])
for (int i = 0; i < n; ++i)
y[i] = a * x[i] + y[i];

}

int main(int argc, const char* argv[]) {
static int n = 100000000; static double a = 2.0;
double *x = (double *) malloc(n * sizeof(double));
double *y = (double *) malloc(n * sizeof(double));

// Initialize x, y
for(int i = 0; i < n; ++i){
x[i] = 1.0;
y[i] = 2.0;

}
daxpy(n, a, x, y); // Invoke daxpy kernel
// Check if all values are 4.0

free(x); free(y);
return 0;

}

Output:
$ $CC $FLAGS_OFFLOAD_OPENMP daxpy.c
$ a.out
Max error: 0.00000
Total runtime: 102.50s

16 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Mapping to Hardware

• Each thread is executed
by a core

Thread

Core

17 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Example DAXPY: Thread Parallelism
void daxpy(int n, double a, double *x, double *y) {
#pragma omp target parallel for map(tofrom:y[0:n]) map(to:a,x[0:n])
for (int i = 0; i < n; ++i)
y[i] = a * x[i] + y[i];

}

int main(int argc, const char* argv[]) {
static int n = 100000000; static double a = 2.0;
double *x = (double *) malloc(n * sizeof(double));
double *y = (double *) malloc(n * sizeof(double));

// Initialize x, y
for(int i = 0; i < n; ++i){
x[i] = 1.0;
y[i] = 2.0;

}
daxpy(n, a, x, y); // Invoke daxpy kernel
// Check if all values are 4.0

free(x); free(y);
return 0;

}

Output:
$ $CC $FLAGS_OFFLOAD_OPENMP daxpy.c
$ a.out
Max error: 0.00000
Total runtime: 9.65s

18 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Mapping to Hardware

• Each thread is executed
by a core

• Each block is executed on
a SM

• Several concurrent blocks
can reside on a SM
depending on shared
resources

Block

Thread

Multiprocessor (SM)

Core

registers
instruction cache

hardware/ software cache

19 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Example DAXPY: Thread Parallelism
void daxpy(int n, double a, double *x, double *y) {
#pragma omp target teams distribute parallel for map(tofrom:y[0:n]) map(to:a,x[0:n])

for (int i = 0; i < n; ++i)
y[i] = a * x[i] + y[i];

}

int main(int argc, const char* argv[]) {
static int n = 100000000; static double a = 2.0;
double *x = (double *) malloc(n * sizeof(double));
double *y = (double *) malloc(n * sizeof(double));

// Initialize x, y
for(int i = 0; i < n; ++i){
x[i] = 1.0;
y[i] = 2.0;

}
daxpy(n, a, x, y); // Invoke daxpy kernel
// Check if all values are 4.0

free(x); free(y);
return 0;

}

Output:
$ $CC $FLAGS_OFFLOAD_OPENMP daxpy.c
$ a.out
Max error: 0.00000
Total runtime: 0.80s

20 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Mapping to Hardware

• Each thread is executed
by a core

• Each block is executed on
a SM

• Several concurrent blocks
can reside on a SM
depending on shared
resources

• Each kernel is executed
on a device

Grid (Kernel)

Block

Thread

Multiprocessor (SM)

Device

Core

registers
instruction cache

hardware/ software cache

