
MPI in Small Bites THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

HPC.NRW Competence Network

MPI in Small Bites

PPCES 2024

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

MPI Concepts

MPI in Small Bites

HPC.NRW Competence Network

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Library Initialization

− MPI is implemented as a library, not a compiler extension

− Common (non-local) objects need coordinated construction

− Library needs to be initialized explicitly

− Multiple methods exist to initialize MPI

− Classic MPI (pre-MPI 4.0) without threads → MPI_Init

− Classic MPI (pre-MPI 4.0) with threads → MPI_Init_thread

− Covered in another part on hybrid programming

− New MPI (MPI 4.0) with threads → MPI_Session_init

− Covered in another part on the session model

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Library Initialization (classic MPI – no threads)

− Start-up, initialisation, finalization, and

shutdown – C

#include <mpi.h>

int main(int argc, char **argv)
{
// … some code …
MPI_Init(&argc, &argv);

// … computation & communication …

MPI_Finalize();
// … wrap-up …
return 0;

}

2 Pre-initialisation mode: uncoordinated

• No MPI function calls allowed with few exceptions

• All program instances run exactly the same code

Post-finalisation mode: uncoordinated

• No MPI function calls allowed with few exceptions

6

Inclusion of the MPI header file1

Initialisation of the MPI environment with implicit synchronisation3

Parallel MPI code4

Finalisation of the MPI environment5

5

4

6

3

2

1 C

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Library Initialization (classic MPI – no threads)

− Start-up, initialisation, finalisation, and

shutdown – Fortran

PROGRAM example
USE mpi_f08 ! USE mpi

! … some code …
INTEGER :: ierr
CALL MPI_Init(ierr)

! … computation & communication …

CALL MPI_Finalize(ierr)

! … wrap-up …
END

2 Pre-initialisation mode: uncoordinated

• No MPI function calls allowed with few exceptions

• All program instances run exactly the same code

Post-finalisation mode: uncoordinated

• No MPI function calls allowed with few exceptions

6

Using the MPI module1

Initialisation of the MPI environment with implicit synchronisation3

Parallel MPI code4

Finalisation of the MPI environment5

5

4

6

3

2

1 Fortran

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Library Initialization (classic MPI – no threads)

− Initialization:

− Initializes the MPI library and makes the process member of MPI_COMM_WORLD

− [C] Both arguments must be either NULL or they must point to the arguments of main()

− May not be called more than once for the duration of the program execution

− Error code as return value in [C] and additional parameter in [F]

− Finalization:

− Cleans up the MPI library and prepares the process for termination

− Must be called once before the process terminates

− Having other code after the finalisation call is not recommended

C: ierr = MPI_Init(&argc, &argv);
Fortran: CALL MPI_Init(ierr)

C: ierr = MPI_Finalize();
Fortran: CALL MPI_Finalize(ierr)

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

General Structure of an MPI Program

− How many processes are there in total?

− Who am I?

#include <mpi.h>

int main(int argc, char **argv)
{
// … some code …
int ierr = MPI_Init(&argc, &argv);
int numberOfProcs, rank;
// … more code …
ierr = MPI_Comm_size(MPI_COMM_WORLD,

&numberOfProcs);
ierr = MPI_Comm_rank(MPI_COMM_WORLD,

&rank);
// … computation & communication …
ierr = MPI_Finalize();
// … wrap-up …
return 0;

}

C

2

1

2 Obtains the identity of the calling process within the MPI program

NB: MPI processes are numbered starting from 0

Example: if there are 4 processes in the job, then rank receives

the value of 0 in the first process, 1 in the second process, etc.

1 Obtains the number of processes (ranks) in the MPI program

Example: if the job was started with 4 processes, then

numberOfProcs will be set to 4 by the call

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

General Structure of an MPI Program

− How many processes are there in total?

− Who am I?
PROGRAM example
USE mpi_f08 ! USE mpi
INTEGER :: rank, numberOfProcs, ierr

! … some code …
CALL MPI_Init(ierr)

! … other code …
CALL MPI_Comm_size(MPI_COMM_WORLD,&

numberOfProcs, ierr)
CALL MPI_Comm_rank(MPI_COMM_WORLD,&

rank, ierr)
! … computation & communication …
CALL MPI_Finalize(ierr)

! … wrap-up …
END PROGRAM example

Fortran

2

1

2 Obtains the identity of the calling process within the MPI program

NB: MPI processes are numbered starting from 0

Example: if there are 4 processes in the job, then rank receives

the value of 0 in the first process, 1 in the second process, etc.

1 Obtains the number of processes (ranks) in the MPI program

Example: if the job was started with 4 processes, then

numberOfProcs will be set to 4 by the call

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Ranks

− The processes in any MPI program are initially indistinguishable

− MPI assigns each process a unique identity (rank) in a communication context

(communicator)

?

?

?

?

??

?

?

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Ranks

− The processes in any MPI program are initially indistinguishable

− MPI assigns each process a unique identity (rank) in a communication context

(communicator)

MPI communicator

1

2

7

4

06

5

3

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Ranks

− The processes in any MPI program are initially indistinguishable (for the user)

− MPI assigns each process a unique identity (rank) in a communication context
(communicator)

− Ranks

− Range from 0 to n-1 (with n processes in the communicator)

− An MPI process can have different ranks in different communicators

− Communicators

− Logical contexts where communication takes place

− Comprises a group of MPI processes with some additional information

− MPI_COMM_WORLD is implicitly available

− Comprises all processes initially started with the MPI program

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

MPI as an SPMD Environment

1. Provide dynamic identification of all peers

− Who am I and who else is also working on this problem?

2. Provide robust mechanisms to exchange data

− Whom to send data to / From whom to receive the data?

− How much data?

− What kind of data?

− Has the data arrived?

3. Provide synchronisation mechanisms

− Have all processes reached same point in the program execution flow?

4. Provide methods to launch and control a set of processes

− How do we start multiple processes and get them to work together?

5. Portability

✓

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Compiling MPI Programs

− MPI is a typical library with C header files, Fortran modules, etc.

− Most MPI vendors provide convenience compiler wrappers (names are not standardized!)

− On the RWTH Aachen Compute Cluster:

$MPICXX$CXX

$MPIFC$FC

$MPICC$CC

mpic++c++

mpif90f90

mpicccc

Specific compilers

called automatically

change depending on

the module loaded.

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Example: MPI Compiler Wrappers

− RWTH Aachen Cluster defines additional environment variables to minimize confusion

cluster:~> $MPICC -show # instruct wrapper to show compile line
icc \
-I"/cvmfs/[…]/impi/2021.6.0-intel-compilers-2022.1.0/mpi/2021.6.0/include" \
-L"/cvmfs/[…]/impi/2021.6.0-intel-compilers-2022.1.0/mpi/2021.6.0/lib/release" \
-L"/cvmfs/[…]/impi/2021.6.0-intel-compilers-2022.1.0/mpi/2021.6.0/lib" \
-Xlinker --enable-new-dtags -Xlinker -rpath \
-Xlinker "/cvmfs/[…]/impi/2021.6.0-intel-compilers-2022.1.0/mpi/2021.6.0/lib/release" \
-Xlinker -rpath \
-Xlinker "/cvmfs/[…]/impi/2021.6.0-intel-compilers-2022.1.0/mpi/2021.6.0/lib" \
-lmpifort -lmpi -ldl -lrt -lpthread
cluster:~> echo $MPICC # check compiler wrapper name
mpiicc
cluster:~> module purge; module load gompi # switch MPI implementation
cluster:~> echo $MPICC # check compiler wrapper name again
mpicc

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Example: MPI Compiler Wrappers

− RWTH Aachen Cluster defines additional environment variables to minimize confusion

cluster:~> module purge && module load gompi
cluster:~> echo $MPICC
mpicc
cluster:~> $MPICC -show
gcc \
-I/cvmfs/[…]/OpenMPI/4.1.4-GCC-11.3.0/include \
-L/cvmfs/[…]/OpenMPI/4.1.4-GCC-11.3.0/lib \
-L/cvmfs/[…]/hwloc/2.7.1-GCCcore-11.3.0/lib \
[…]
-Wl,/cvmfs/[…]/libevent/2.1.12-GCCcore-11.3.0/lib -Wl,--enable-new-dtags -lmpi

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Executing MPI Programs

− Most MPI implementations provide a special launcher program:

− Launches nprocs instances of program with command-line arguments arg1, arg2, …

− The standard specifies the mpiexec program, but does not require it:

− IBM BG/Q: runjob --np 1024 …

− SLURM resource manager: srun –n 96 –N 1 …

mpiexec –n nprocs … program <arg1> <arg2> <arg3> …

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Executing MPI Programs

− The launcher often performs more than simply launching processes:

− Helps MPI processes find each other and establish the world communicator

− Redirects the standard output of all ranks to the terminal

− Redirects the terminal input to the standard input of rank 0

− Forwards received signals (Unix-specific)

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

MPI as an SPMD Environment

1. Provide dynamic identification of all peers

− Who am I and who else is also working on this problem?

2. Provide robust mechanisms to exchange data

− Whom to send data to / From whom to receive the data?

− How much data?

− What kind of data?

− Has the data arrived?

3. Provide synchronisation mechanisms

− Have all processes reached same point in the program execution flow?

4. Provide methods to launch and control a set of processes

− How do we start multiple processes and get them to work together?

5. Portability

✓

✓

✓

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Error handling

− Error codes indicate the success of the operation:

− Failure is indicated by error codes other than MPI_SUCCESS

− An MPI error handler is called first before the call returns

− The default error handler for non-I/O calls aborts the entire MPI program!

− Error checking in simple programs is redundant

− Actual MPI error code values are implementation specific

− Use MPI_Error_string to derive human readable information

if (MPI_SUCCESS != MPI_Init(&argc, &argv))
…

CALL MPI_Init(ierr)
IF (ierr /= MPI_SUCCESS) …

FortranC

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Handles to Opaque Objects

− MPI objects (e.g., communicators) are referenced via handles

− Process-local values

− Cannot be passed from one process to another

− Objects referenced by handles are opaque

− Structure is implementation dependent

− Blackbox for the user

− C (mpi.h)

− typedef’d handle types: MPI_Comm, MPI_Datatype, MPI_File, etc.

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Handles to Opaque Objects II

− Fortran (USE mpi)

− All handles are INTEGER values

− Easy to pass the wrong handle type

− Fortran 2008 (USE mpi_f08)

− Wrapped INTEGER values: TYPE(MPI_Comm), TYPE(MPI_File), etc.

− The INTEGER handle is still available: comm%MPI_VAL

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Datatype Handles

− MPI is a library

− Cannot infer datatypes of supplied buffers at runtime

− User needs to provide additional information on buffer type

− MPI datatype handles tell the MPI library how to:

− read binary values from the send buffer

− write binary values into the receive buffer

− correctly apply value alignments

− convert between machine representations in heterogeneous environments

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Datatype Handles II

− MPI datatypes are handles

− Cannot be used to declare variables of a specific language type

− sizeof(MPI_INT) provides the size of a datatype handle NOT the size of an int in C

− Type Signatures

− Sequence of basic datatypes in a buffer

− Basic datatypes correspond to native language datatypes

− Type Maps

− Sequence of basic datatypes AND their location in a buffer

− Type signatures of associated operations have to match; Type map may differ!

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Basic MPI Datatypes

− MPI provides predefined datatypes for each language binding:

MPI data type C data type

MPI_CHAR char

MPI_SHORT short

MPI_INT int

MPI_FLOAT float

MPI_DOUBLE double

MPI_UNSIGNED_INT unsigned int

… …

MPI_BYTE -

8 binary digits

no conversion

used for untyped data

MPI data type Fortran data type

MPI_INTEGER INTEGER

MPI_REAL

MPI_REAL8

REAL

REAL(KIND=8)

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

… …

MPI_BYTE -

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Local vs. Non-local Procedures

− Non-local procedures may require,

− during its execution,

− some specific, semantically-related MPI procedure

− to be called on another MPI process”

− Local procedure are not non-local

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

MPI Operations

− MPI defines several operations, which are

− a sequence of steps

− performed by the MPI library

− to stablish and enable

− data transfer

− and/or synchronization

− Four stages

1. Initialization – Resources (argument lists, buffer address, etc.) are handed to the MPI library

2. Starting – The operation takes over control of the resources (buffer contents)

3. Completion – Return control of the resources (buffer contents)

4. Freeing – Return control of the remaining resources

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Blocking vs. Non-blocking vs. Asynchronous

− Blocking procedures return when the associated operation is complete locally

− Any input argument can be safely reused or deallocated

− Operation may not be completed remotely

− Non-blocking procedures return before associated operation is complete locally

− One or more additional calls are needed to complete operation

− Input arguments may not be written or deallocated until operation is complete

− Synchronous operations complete locally only with specific remote intervention

− Asynchronous operations may complete locally without remote intervention

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

MPI Communication Paradigms

Point-to-Point

Communication

Collective

Communication

One-sided

Communication

	Folie 1: MPI in Small Bites
	Folie 2: MPI Concepts
	Folie 3: Library Initialization
	Folie 4: Library Initialization (classic MPI – no threads)
	Folie 5: Library Initialization (classic MPI – no threads)
	Folie 6: Library Initialization (classic MPI – no threads)
	Folie 7: General Structure of an MPI Program
	Folie 8: General Structure of an MPI Program
	Folie 9: Ranks
	Folie 10: Ranks
	Folie 11: Ranks
	Folie 12: MPI as an SPMD Environment
	Folie 13: Compiling MPI Programs
	Folie 14: Example: MPI Compiler Wrappers
	Folie 15: Example: MPI Compiler Wrappers
	Folie 16: Executing MPI Programs
	Folie 17: Executing MPI Programs
	Folie 18: MPI as an SPMD Environment
	Folie 19: Error handling
	Folie 20: Handles to Opaque Objects
	Folie 21: Handles to Opaque Objects II
	Folie 22: Datatype Handles
	Folie 23: Datatype Handles II
	Folie 24: Basic MPI Datatypes
	Folie 25: Local vs. Non-local Procedures
	Folie 26: MPI Operations
	Folie 27: Blocking vs. Non-blocking vs. Asynchronous
	Folie 28: MPI Communication Paradigms

