
MPI in Small Bites INNOVATION THROUGH COOPERATION.THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

HPC.NRW Competence Network

MPI in Small Bites

PPCES 2024

INNOVATION DURCH KOOPERATION.

MPI & Threads – Hybrid Programming

MPI in Small Bites

HPC.NRW Competence Network

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Hybrid Programming: Motivation

− MPI is sufficiently abstract so it runs perfectly fine on a single node:

− it doesn’t care where processes are located as long as they can communicate

− message passing implemented using shared memory and IPC

− all details hidden by the MPI implementation;

− usually faster than sending messages over the network;

− but…

− … this is far from optimal:

− MPI processes are separate (heavyweight) OS processes

− portable data sharing is hard to achieve

− lots of program control / data structures have to be duplicated (uses memory)

− reusing cached data is practically impossible

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Hybrid Programming: Motivation

− Increasing number of cores per node

− Increasingly complex nodes – many cores, GPUs, Intel® Xeon Phi , etc.

Network

Network

Typical system in 2005 Typical system in 2021

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Hierarchical mixing of different programming paradigms

MPI

OpenMP

0

5 6 7 8 9

1 2 3 4

Shared memory

OpenCL / CUDA

GPGPU

OpenMP

0

5 6 7 8 9

1 2 3 4

Shared memory

OpenCL / CUDA

GPGPU

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

MPI – Threads Interaction

− Most MPI implementation are threaded (e.g., for non-blocking requests) but not thread-safe.

− Four levels of threading support in increasing order:

− All implementations support MPI_THREAD_SINGLE, but some do not support MPI_THREAD_MULTIPLE.

Level identifier Description

MPI_THREAD_SINGLE Only one thread may execute

MPI_THREAD_FUNNELED Only the main thread may make

MPI calls

MPI_THREAD_SERIALIZED Only one thread may make MPI

calls at a time

MPI_THREAD_MULTIPLE Multiple threads may call MPI at

once with no restrictions

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Initialization MPI when using Threads

− Initialise MPI with thread support:

− required specifies what thread level support one requires from MPI

− provided is set to the actual thread level support provided

− could be lower or higher than the required level – always check!

− MPI_Init – equivalent to required = MPI_THREAD_SINGLE

− The level of thread support cannot be changed later

− The thread that calls MPI_Init_thread becomes the main thread

MPI_Init_thread (int *argc, char ***argv, int required, int *provided)

MPI_INIT_THREAD (required, provided, ierr)

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Query Functions

− Obtain the provided level of thread support:

− If MPI was initialised by MPI_Init_thread, then provided is set to the same value as the one

returned by the initialisation call

− If MPI was initialised by MPI_Init, then provided is set to an implementation specific default

value

− Find out if running in the main thread:

− flag set to true if the current thread is the main thread

MPI_Query_thread (int *provided)

MPI_Is_thread_main (int *flag)

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

MPI + OpenMP

− The most common approach to hybrid programming

− Coarse-grained parallelisation with MPI

− Fine-grained loop or task parallelisation with OpenMP

− Different MPI implementations provide varying degree of support for threaded programs

− MPI_THREAD_MULTIPLE often not implemented completely for all transports

− Performance decrease due to locking overhead

− Safest and most portable approach: Call MPI from the main thread only (and outside any

OpenMP parallel region) → MPI_THREAD_FUNNELED

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Simple: Iterative processing with MPI only

double data[], localData[];

for (int iter = 0; iter < maxIters; iter++) {

MPI_Scatter(data, count, MPI_DOUBLE,
localData, count, MPI_DOUBLE,
0, MPI_COMM_WORLD);

for (int i = 0; i < count; i++)
localData[i] = exp(localData[i]);

MPI_Gather(localData, count, MPI_DOUBLE,
data, count, MPI_DOUBLE,
0, MPI_COMM_WORLD);

}

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Safe: MPI called outside any OpenMP parallel region

double data[], localData[];

for (int iter = 0; iter < maxIters; iter++) {

MPI_Scatter(data, count, MPI_DOUBLE,
localData, count, MPI_DOUBLE,
0, MPI_COMM_WORLD);

#pragma omp parallel for
for (int i = 0; i < count; i++)

localData[i] = exp(localData[i]);

MPI_Gather(localData, count, MPI_DOUBLE,
data, count, MPI_DOUBLE,
0, MPI_COMM_WORLD);

}

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Advanced: MPI called by the master OpenMP thread only

double data[], localData[];
#pragma omp parallel
for (int iter = 0; iter < maxIters; iter++) {

#pragma omp master
MPI_Scatter(data, count, MPI_DOUBLE,

localData, count, MPI_DOUBLE,
0, MPI_COMM_WORLD);

#pragma omp barrier
#pragma omp for
for (int i = 0; i < count; i++)

localData[i] = exp(localData[i]);
#pragma omp master
MPI_Gather(localData, count, MPI_DOUBLE,

data, count, MPI_DOUBLE,
0, MPI_COMM_WORLD);

#pragma omp barrier
}

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Adventurous: MPI called by a single OpenMP thread at a time

MPI_Init_thread(&argc, &argc, MPI_THREAD_SERIALIZED, &provided);

double data[], localData[];
#pragma omp parallel
for (int iter = 0; iter < maxIters; iter++) {

#pragma omp single
MPI_Scatter(data, count, MPI_DOUBLE,

localData, count, MPI_DOUBLE,
0, MPI_COMM_WORLD);

#pragma omp for
for (int i = 0; i < count; i++)

localData[i] = exp(localData[i]);
#pragma omp single
MPI_Gather(localData, count, MPI_DOUBLE,

data, count, MPI_DOUBLE,
0, MPI_COMM_WORLD);

}

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Addressing in Hybrid Programs

− MPI was not designed initially with multithreading in mind

− Single rank (end-point) per process per communicator

− Addressing individual threads is tricky (and mostly hacky)

− MPI and OpenMP IDs live in orthogonal spaces

− MPI rank [0, #procs-1] MPI_Comm_rank()

− OpenMP thread ID [0, #threads-1] omp_get_thread_num()

− Hybrid rank:thread [0, #procs-1] × [0, #threads-1]Field Value source Remark

source rank Sender process rank Automatically copied, no control over it

destination rank user-supplied Only one rank per process

tag user-supplied Free to choose

communicator user-supplied Multiple communicators possible

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Addressing in Hybrid Programs

− Tags as thread IDs

− Each MPI message carries a tag with at least 15 bits of user-supplied data

− Simple idea: use tag value to address individual threads

− (+) straightforward to implement

− (+) very large number of threads per process addressable

− (-) not possible to further differentiate the messages

− (-) no information about the sending thread retained

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Addressing in Hybrid Programs

− Tags as thread IDs

− Each MPI message carries a tag with at least 15 bits of user-supplied data

− Better idea: multiplex destination thread ID with tag value

− e.g., 7 bits for tag value (0..127) and 8 bits for thread ID (0..255)

− (+) still possible to differentiate the messages

− (-) wildcard receives not trivial to implement

− (-) no information about the sending thread retained

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Addressing in Hybrid Programs

− Tags as thread IDs

− Each MPI message carries a tag with at least 15 bits of user-supplied data

− Even better idea: multiplex source and destination thread IDs with tag value

− suitable for MPI implementations that allow more than 15 bits for tag value

− Open MPI and Intel MPI both allow tag values from 0 to 231-1

− (+) still possible to differentiate the messages

− (+) information about the sending thread retained

− (-) wildcard receives not trivial to implement

− (-) not portable to MPI implementations with smaller tag space

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Multiplex source and destination thread IDs with tag value

#define MAKE_TAG (tag,stid,dtid) \
(((tag) << 16) | ((stid) << 8) | (dtid))

// Send data to drank:dtid with tag mytag

MPI_Send(data, count, MPI_FLOAT, drank,
MAKE_TAG(mytag, omp_get_thread_num(), dtid),
MPI_COMM_WORLD);

// Receive data from srank:stid with a specific tag mytag

MPI_Recv(data, count, MPI_FLOAT, srank,
MAKE_TAG(mytag, stid, omp_get_thread_num()),
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Multiplex source and destination thread IDs with tag value

#define GET_TAG(val) \
((val) >> 16)

#define GET_SRC_TID(val) \
(((val) >> 8) & 0xff)

#define GET_DST_TID(val) \
((val) & 0xff)

// Wildcard receive from srank:stid with any tag

MPI_Probe(srank, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (GET_SRC_TID(status.MPI_TAG) == stid &&

GET_DST_TID(status.MPI_TAG) == omp_get_thread_num())
{

MPI_Recv(data, count, MPI_FLOAT, srank, status.MPI_TAG,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

MPI_Probe and multi-threading

− Beware of possible data races:

− messages, matched by MPI_Probe in one thread, can be received by a matching receive in

another thread, stealing the message from the first one

− Needs very good care on the side of the thread handling

− Problem solved in MPI-3 with MPI_Mprobe and MPI_Mrecv

− MPI_Mprobe removes the matched message from the matching process

− Returns a message handle to reference the matched message in future receives

− MPI_Mprobe (or MPI_Improbe) used to received a message via message handle

MPI_Mprobe (int source, int tag, MPI_Comm comm, MPI_Message *message,
MPI_Status *status)

MPI_Mrecv (void* buf, int count, MPI_Datatype datatype,
MPI_Message *message, MPI_Status *status)

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Use of multiple communicators

comm[0]

comm[1]

comm[2]

comm[3]

rank 0 rank 1 rank 2

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Use of multiple communicators

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
MPI_Comm comm[nthreads], tcomm;

#pragma omp parallel private(tcomm) num_threads(nthreads)
{

MPI_Comm_dup(MPI_COMM_WORLD, &comm[omp_get_thread_num()]);
tcomm = comm[omp_get_thread_num()];

--
// Sender
MPI_Send(data, count, MPI_FLOAT, omp_get_thread_num(),

drank, comms[dtid]);
--

// Receiver
MPI_Recv(data, count, MPI_FLOAT, stid, srank, tcomm,

&status);
--

MPI_Comm_free(&comm[omp_get_thread_num()]);
}

MPI in Small Bites – PPCES 2024 INNOVATION THROUGH COOPERATION.

Summary of Caveats

− Race-condition possible between MPI_Probe and corresponding MPI_Recv

− Use of “Matched Probe and Receive”

− MPI provides no way to address specific threads in a process

− clever use of message tags

− clever use of many communicators

− Thread-safe MPI implementations often perform worse than non-thread-safe

− Additional synchronisation overhead

	Folie 1: MPI in Small Bites
	Folie 2: MPI & Threads – Hybrid Programming
	Folie 3: Hybrid Programming: Motivation
	Folie 4: Hybrid Programming: Motivation
	Folie 5: Hierarchical mixing of different programming paradigms
	Folie 6: MPI – Threads Interaction
	Folie 7: Initialization MPI when using Threads
	Folie 8: Query Functions
	Folie 9: MPI + OpenMP
	Folie 10: Simple: Iterative processing with MPI only
	Folie 11: Safe: MPI called outside any OpenMP parallel region
	Folie 12: Advanced: MPI called by the master OpenMP thread only
	Folie 13: Adventurous: MPI called by a single OpenMP thread at a time
	Folie 14: Addressing in Hybrid Programs
	Folie 15: Addressing in Hybrid Programs
	Folie 16: Addressing in Hybrid Programs
	Folie 17: Addressing in Hybrid Programs
	Folie 18: Multiplex source and destination thread IDs with tag value
	Folie 19: Multiplex source and destination thread IDs with tag value
	Folie 20: MPI_Probe and multi-threading
	Folie 21: Use of multiple communicators
	Folie 22: Use of multiple communicators
	Folie 23: Summary of Caveats

