
Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen1

Ruud van der Pas
Senior Principal Software Engineer

Oracle Linux and Virtualization Engineering
Oracle, USA

PPCES 2024
March 11-15, 2024

RWTH Aachen University

Introduction into Parallel Computing

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Previously, I worked at the University of Utrecht, Convex
Computer, SGI, and Sun Microsystems

My background is in mathematics and physics

$ whoishe

2

Currently I work in the Oracle Linux Engineering organization

I have been involved with OpenMP since the introduction

I am passionate about performance and OpenMP in particular

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

About this Talk

3

A seemingly random collection of topics

The common element is Parallel Computing

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

The Topics

4

• What is Parallelism?
• What is Parallel Computing?
• Concepts in Parallel Computing

- What is a thread?
- Serial versus Parallel
- Parallel overhead
- Amdahl's Law
- Load balancing
- Numerical results

• Parallel Architectures
• Parallel Programming Models
• Common Mistakes in Parallel Applications

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen5

What is Parallelism?

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen6

My shopping list
• Bread
• Fruit
• Milk

A Trip to Ruud’s Supermarket

Fruit

Bread

Milk

1

2

3

Fruit

Bread

Milk

2

3

1The order does not matter

In both cases, my final
shopping basket is the same

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

What is Parallelism?

7

No fixed order
a = 2 * b

c = 3 * d

Independence
c = 3 * d

a = 2 * b

Parallelism c = 3 * d a = 2 * b

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Parallel Granularity*

8

Multiple instructions

A collection of program statements

Calls to functions or subroutines

A larger part of your program

G
ranularity increases

*) A granule is a small particle of a substance, like a granule of sugar

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen9

What is Parallel Computing?

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Parallel Computing - An Informal Definition

10

The goal of Parallel Computing is to reduce the time to solve a
problem

To achieve this, multiple computational resources are used to
solve a single problem

Examples of such computational resources are hardware
threads, cores, or even entire systems

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Parallel Computing - Methodology

11

Select a parallel programming model (more on that later)

Identify independent operations/computations in your
application

Apply the parallel programming model to distribute the work
over the computational resources available to you

Run your program, close your eyes, wait, open them, and hope
for the best ;-)

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Parallel Computing - The Benefit

12

Theoretically, can get unlimited performance

For example, 10x using 10 computers, 100x using 100 computers,
etc.

In practice, this may be a challenge to achieve though

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen13

Concepts in Parallel Computing

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

What is a Thread?

14

“A thread of execution is the smallest sequence of programmed
instructions that can be managed independently by a scheduler”*

*) Source: https://en.wikipedia.org/wiki/Thread_(computing)

In other words, independent parts of an application are executed
by threads

Parallel programming is about creating and managing the
threads, including assigning work to threads

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Example - Four Threads at Work

15

instruction

instruction

instruction

Thread 0

PC instruction

instruction

instruction

Thread 1

PC

instruction

instruction

instruction

Thread 2

PC instruction

instruction

instruction

Thread 3

PC

Core Core

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

What is Multithreading?

16

A multithreaded architecture has multiple independent
execution vehicles (e.g. cores, hardware threads, ...)

A multithreaded application creates and manages multiple
software threads of execution

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Serial versus Parallel

17

T(total) = T(serial) + T(parallel)

The part of the application that has not been parallelized is
called the serial, single threaded, or sequential, part

As we shall see soon, one of the goals of efficient parallelization
is to keep the serial part as short as possible

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Two Notions of Time

18

The goal of parallel computing is to reduce the time to solution,
usually called the wall clock time, or elapsed time

In doing so, the total CPU time tends to be higher, compared to
the sequential version of the application

This is because there is additional code that needs to be
executed, often called the (parallel) overhead

The goal is to write efficient parallel code and keep the overhead
to a minimum

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Parallel Computing - Overhead

100 seconds

19

Sequential
program

The goal is to keep the
overhead to a minimum

v

v

v

v

v

v

v

v

v

v

v

> 25 seconds

In Practice

More realistic parallel program

25 seconds

Parallel program

Ideal Case
(“Embarrassingly Parallel”)

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen20

Amdahl's Law

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Parallel Speed Up - How Much Faster?

21

Number of processors

Im
pr

ov
em

en
t

Theoretical

Practice

Optimal

Why is this?

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Amdahl’s Law - An Example

22

Suppose your application needs 100 seconds to run

If 80% of this run time can execute in parallel, the time using
4 threads is 80/4+20 = 40 seconds

This means that your program is 2.5x faster, not 4x

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Amdahl’s Law - The Formula*

23

Suppose that you have parallelized a fraction "f" of the run time

Split the single thread time in two parts: T(1) = f*T(1) + (1-f)*T(1)

On P threads: T(P) = f*T(1)/P + (1-f)*T(1) = (f/P + 1-f)*T(1)

Amdahl's Law: S(P,f) = T(1)/T(P) = 1/(f/P + 1-f)

*) This is a simplification - The parallel overhead is ignored, often causing the estimate to be optimistic

Example for f = 0.8: S(4,0.8) = 1/(0.8/4 + 0.2) = 2.5

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Amdahl’s Law Using 16 Threads

24

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Amdahl’s Law - Practical Use

25

Rewrite the formula: f = (1 - T(P)/T(1))/(1 - 1/P)

The righthand side can be computed!

Example: T(1) = 100 and T(4) = 37 => T(P)/T(1) = 0.37

It follows that f = (1-0.37)/(1-1/4) = 0.63/0.75 = 0.84 = 84%

Estimated speed-up S(8, 0.84) = 1/(0.84/8 + 0.16) = 3.78

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Morale

26

Amdahl’s Law shows that you need to parallelize a significant
fraction of the run time, in order to see a decent speed up for

higher thread counts

This implies that the parallel overhead should be minimal

The most important issue is that the serial, single thread, part
needs to be minimal; it will dominate sooner than later

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

About Single Thread Performance and Scalability

27

Why? If your code performs badly on 1 core, what do you think
will happen on 10 cores, 20 cores, … ?

You have to pay attention to single thread performance

Scalability can mask poor performance!
(a slow code tends to scale better …)

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Load Balancing

28

= thread is waiting ("idle")

Ideal situation
• All threads start and finish at the same time
• Shortest execution time

1 thread idle

2 threads idle

3 threads idle

Suboptimal situation
• Threads waste time and energy doing nothing
• Longer execution time

Load Imbalance

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Numerical Results

29

Due to roundoff effects, the order of the floating-point
computations may affect the results

In parallel computing, the order of operations is non-
deterministic ...

A = B + C + D + E

A = B + C
A = A + D
A = A + E

T2 = D + ET1 = B + C
A = T1 + T2

Sequential Computation Parallel Computation

Ti
m

e

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen30

Parallel Architectures

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

A Computer

31

Note: CPU = Central Processing Unit

Holds Data and Instructions

Operates on Data using Instructions

Memory

CPU

Holds Data and Instructions

Memory

CPU

Cache(s)

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Intermezzo - Cache Coherence

32

In very simple terms, cache coherence ensures that the system
knows where data is, and what the coherency state is

Required in a system with shared memory and caches

The coherency state indicates whether data in a particular location
can be used, or not

It allows for transparent parallel programming, since the user does
not need to know where data physically resides

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

About Computers

33

Memory

CPU

Cache(s)

A Computer Many Computers

How to turn this into a
Parallel Computer ?

Note: CPU = Central Processing Unit

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Parallel Architectures - World’s Briefest History

Shared M
em

ory CPU

Cache(s)

CPU

Cache(s)

Memory

cache coherent bus

34

Memory

CPU

Cache(s)

CPU

Cache(s)

Memory

CPU

Cache(s)

Memory

Standard Network

Distributed M
em

ory

CPU

Cache(s)

Memory

CPU

Cache(s)

Memory

Cache Coherent Network

Cluster

NUMA

SMP

Note that Accelerators/
GPUs may be added to

one or more nodes

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Cores and Multicore

35

This stands for Central Processing Unit and is the part of the
hardware with the logic controls, computational units, etc.

For a long time, the word CPU was used

When multiple processing parts were put on a single chip, the
terms core and multicore were introduced

Multicore processors became available a little over 20 years ago

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

UltraSPARC IV Dual Core - Introduced 2004

36

The RWTH Aachen was one of

the first to use SPARC US IV

based servers!

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

M
em

or
yL2

D

I
Core

A Typical Memory Hierarchy

37

Core
D

L2
I

L3
(LLC)

Capacity Increases

Speed Decreases

The unit of transfer
is a “cache line”

A cache line contains
multiple elements

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

About Cores and Hardware Threads

38

A core may, or may not, support hardware threads

This is part of the design

These hardware threads may accelerate the execution of a
single application, or improve the throughput of a workload

The idea is that the pipeline is used by another thread in case
the current thread is idle

Each hardware thread has a unique ID in the system

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

How Hardware Threads Work

39

Time

No hardware
threads

Two hardware
threads

saved time

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Hardware Thread IDs

40

Co
re

H
ar

dw
ar

e
Th

re
ad

s

Co
re

H
ar

dw
ar

e
Th

re
ad

s

0

2
4

6

1

3
5

7

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Multicore and Hardware Threads

41

Core

Memory

Core Core

Multicore Node

“SMP on a Chip” Core

Hardware Threads

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

A Contemporary Multi-Node System

42

A “Single System Image” NUMA System

Core

Memory

Core Core

Multicore Node or “Socket”

Cache Coherent Network

Core

Memory

Core Core

Multicore Node or “Socket”

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

A Hybrid Parallel System

43

Standard Network

Distributed Memory
Sh

ar
ed

 M
em

or
y

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

The Graphical Processing Unit (GPU)

44

Started as an add-on card for graphics processing

By now, the GPUs are very powerful parallel compute engines

While they are still "added" to a conventional processor, they
often handle a large part of the workload

Not all workloads can benefit from a GPU, but for example, they
are very heavily used in AI computations

During PPCES you will learn more how to use the GPU(s)

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

A Silent Hardware Evolution

45

Arm sells a processor or device design, not a product

Large companies leverage this model

They collaborate with Arm on very sophisticated designs

Those processors go into servers, but also into commodity
products, like cellphones

Let's see what that brings us

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Other

Cache Coherent Interconnect

L3 Cache

big.LITTLE DynamIQ Concept From Arm

46

LITTLE
coresbig cores

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Recent Server Level Processors

47

48 cores
(+4 support cores)

80 cores

Arm based Arm based

Substantial differences under the hood,
but a shared memory system

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

A Laptop or HPC System? - The Apple M2 Pro Processor

48

• 4 Efficiency Cores
• 8 Performance Cores
• 19 Core GPU
• 16 Core Neural Engine
• Media Engine
• Image Signal Processor

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

It is Definitely a Multithreaded Architecture

49

Multithreaded
Applications

4 Efficiency Cores 8 Performance Cores

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen50

Parallel Programming Models

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Programming Parallel Systems

51

How do we program such systems?

A Distributed Memory System is typically programmed using
network sockets, or (in HPC mostly) using MPI

A Shared Memory System is often programmed using Pthreads,
or OpenMP, or Java Threads in the case of Java

A Hybrid System uses the combination of these two:
MPI across the cluster nodes and OpenMP within a node

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

The Shared Memory Model (e.g. OpenMP)

52

T

private
memory

T
private

memory

T T
private

memory

private
memory

T
private

memory

Shared
Memory

Transparent sharing via
Shared Memory

Each thread has a private
memory as well

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

How Does OpenMP Work?

53

source code

Add OpenMP Controls

OpenMP

OpenMP

OpenMP

parallel
executable execute

OpenMP run time
library

$./a.out
Hello OpenMP
Hello OpenMP
$

Environment
variables

compiler

OpenMP
enabled

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

An Example of an OpenMP Program

54

#pragma omp parallel for private(i) shared(a)
for (i=0; i<10; i++)
 a[i] = 0;

for (i=0; i<=4; i++)
 a[i] = 0;

Thread 0

for (i=5; i<=9; i++)
 a[i] = 0;

Thread 1

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

The Distributed Memory Model (e.g. MPI)

55

T

private
memory

T
private

memory

T T
private

memory

private
memory

T
private

memory

Sharing is through sending
and receiving messages

Nothing is shared

Network
Switch

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Example - Fragment of an MPI Program

56

integer data(10), status(MPI_STATUS_SIZE)
you = 1
him = 0
call MPI_Init(ierr)
call MPI_Comm_Rank(MPI_COMM_WORLD, me, ierr)
if (me == 0) then
 call MPI_Send(data, 10, MPI_INTEGER, you, 1957, MPI_COMM_WORLD, ierr)
else if (me == 1) then
 call MPI_Recv(data, 10, MPI_INTEGER, him, 1957, MPI_COMM_WORLD, status,ierr)
end if
call MPI_Finalize(ierr)

Status of receive operation

Initialize MPI environment

Get the ID of the MPI rank executing the code

If I am rank 0, send 10 integers to you

If I am rank 1, receive 10 integers from him

Stop the MPI environment

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Example - Two Processes are Started

57

you = 1
him = 0
call MPI_Init(...)
call MPI_Comm_Rank(me)
call MPI_Send(you)
call MPI_Finalize(...)

you = 1
him = 0
call MPI_Init(...)
call MPI_Comm_Rank(me)
call MPI_Recv(him)
call MPI_Finalize(...)

Sets me = 0 Sets me = 1

Connection
Established

MPI Rank 0 MPI Rank 1

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen58

Common Mistakes in Parallel Computing

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

What Could Go Wrong in Parallel Computing?

59

Every programming model comes with specific pitfalls
We list some of the more common ones

• Illegal parallelization

• Incorrect scoping

• Synchronization errors

• Data races

• ...

OpenMP

• Illegal parallelization

• Send/receive mismatch

• Message label incorrect

• Individual process may crash

• ...

MPI

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Data Races

60

In a shared memory model, updates of shared data may require
care

Since each thread can read and write shared data, one has to be
careful this happens correctly

Failure to do so, introduces a “data race”

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Definition of a Data Race

61

Two different threads in a multithreaded shared memory
program, access the same (=shared) memory location

• Concurrently and
• Without holding any common exclusive locks and
• At least one of the accesses is a write/store operation

If all these 3 conditions are met, the program has a data race

A data race leads to silent data corruption …

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

An Example of a Data Race

62

What is the final value of variable "n"?
It depends. Even from run to run …

#pragma omp parallel
{

} // End of parallel region

n

TT

Note: As you will learn during PPCES, OpenMP has constructs to avoid data races

n = omp_get_thread_num();

shared(n)

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen

Why Writing Parallel Programs?

63

It does come with its own set of pitfalls

Don't despair though and don't give up

Parallel Programming is Great Fun!

The reward is blazing performance :-)

Copyright (©) 2024 by Ruud van der PasIntroduction into Parallel Computing - PPCES 2024, March 11-15, RWTH Aachen64

Thank You And … Stay Tuned!

Ruud van der Pas

 OpenMP
Does Not Scale
Bad

