“It Is Okay To Be Laz

Q-

- v - t‘ o4 X . t‘ M \ - L 4

o =% mmw%;% =~ R TICE I A s = % o 33

L b e .-’ v ’ Ty : U Y, ‘~‘ ey - ‘il Vo j. e ‘ "_ :"‘ . g . . - C—
g . = / g e - Py - .

7 7 "S5 e g L : S ol i g i A
ST, oy @ % . = 25 _2&' M ey Jertns - me g Y - S, ST
o ~ ! *h sl ’.o 2 : .. .‘ : . -'.‘ 3 oo é o = - ~ \ .v ."-..g. '. *

S i el ; F - .. - mw~ -~,$~ v . >

-~ . : L
 — T e : - o

S

“Senior Prmc:pal Software Engineer

- Ot;p‘cl’é Linux and Virtualization Engineering
. Oracle, USA

PPCES 2024
March 11-15, 2024
RWT H Aachen Umvers:ty

- ————— " ——
AT T e

-a

$ whoishe

My background is in mathematics and physics

Previously, | worked at the University of Utrecht, Convex Computer,
SGl, and Sun Microsystems

Currently | work in the Oracle Linux Engineering organization
| have been involved with OpenMP since the introduction
| am passionate about performance and OpenMP in particular

SEE

n It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Agenda
Prologue
Part I - Tips and Tricks
A Well Deserved 10 Minute Break
Part Il - The Joy of Computer Memory

Q and (some) A

PlP
Cle|S

H It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Prologue

PlP
Cle|S

It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Your OneStop Place for OpenMP

https.//www.openmp.org

OpenMP ARB Releases Technical Report 12

= This is a preview of OpenMP 6.0, that will be released in 2024
= TR12 hae Improved support for tasking, devices, and C/C++
= TR12 is downloadable here

READ MORE

Latest News

OpenMP p*

AW Fortran Package
M d
BW coenve

Technical 1

Report 12
Fortran Package Manager
Released and OpenMP

Ine FOrtran Pickage Manager, or ‘pm, §
a community-driven, openscurce builc
tool and package manager for the

OpenMP ARD Releases Fertran linguage. fam makes it easy for
Tachnical Report 12 DEGIMNErs 10 GeVeIop Apolcs

eaml FLUp by quickl
The OpenMP® Architzciurs Review steamiines peg i ey

Board |ARB| hasreleased Technical
Report 12, the seraonc preview of
version 6.0 of the CpenMP AP, which
wil be released In 2024.

SAMSUNG

Supercomputing 2023 CparMP® ARB adds new

November 12, 2023 OpenMP will be ir § MemMoer Samsung

Dervser for Superccmputing 2023 with Qe DperMP Architecture Review Beard

feurtrorias, a BOF, and mere (today anncunced that Samsung
has 0F L board

u It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

X fF in N\ 2

The number of members
continues to increase!

ISSUes, trends, recent research deas
ard "e<ults related to paralel
gning with OgerM?,

@ SiFive

SFiva joins the OpenMP®
effcrt
SiFive pins the OpenMP Architecturg

smarsd memory saraliel programming
model n use aay,

PlP
Cle|S

Copyright (©) 2024 by Ruud van der Pas

Food for the Eyes and Brains

Michael Klemm., Jim Cownie

HIGH PERFORMANCE
PARALLEL RUNTIMES

IGN AND D g

THE OPENMP USING. OPENMP— { PROGRAMMING
COMMON CORE . THE NEXT STEP- "= '/ {/YOUR GRU WITH

£
Making OpenMP Simple Again Affinity, Accelerators, Tasking, and SIMD) { (OPENMP

ogn . * Performanca Portablity 1or GPUsS

{ s

Tom Deakin and Timothy G. Mattson

2
m
o
-
m
=z
=
-
2
s
o
S
S
m

PORTAELE SH

AREDC MEMORY PARALLEL PROGRAMIMING

<5

: : o
. e -
3. - (s et o, L. R e
-~ - — PN - .-, T
e — . - .

Timothy G. Mattson, Yun (Helen) He, Ruud van QQr Pas, E“" Stotzer, N
and Alice E. Koniges and Chiristian Terboven r

OpenMP 2.5 and
intro Parallel
Computing

Covers the OpenMP Focus on the What goes on Must read for users
Basics to get started Advanced Features under the hood? of GPUs in OpenMP

PlP
Cle|S

n It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Intermezzo - The gprofng Tool

PlP
Cle|S

It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

About gprofng
There are many profiling tools available
Select the one that you prefer
The gprofng profiling tool is part of GNU binutils
It is the tool that | used for the profiling views in this talk
And yes, | am involved with the development ;-)

PIP
CE

n It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Source Code is in GNU Binutils

GNU Binutils

The GNU Binutils are a collection of binary tools. The main ones are:

+ 1d - the GNU linker. https://www.gnu.org/software/binutils/

e as - the GNU assembler.
e gold - a new, faster, ELF only linker.

The binutils Home Page:

gprofng - Collects and displays application performance data.

But they also include:

addr2line - Converts addresses into filenames and line nu
ar - A utility for creating, modifying and extracting from ar
c++Hfilt - Filter to demangle encoded C++ symbols.
dlitool - Creates files for building and using DLLs.
elfedit - Allows alteration of ELF format files.
gprof - Displays profiling information.

gprofng - Collects and displays application performance data.
nlmconyv - Converts object code into an NLM. = °1,°
am .1 i8sbelrom abjoat s Hyperlink to the gprofng Wiki
objcopy - Copies and translates object files.

objdump - Displays information from object files.

ranlib - Generates an index to the contents of an archive.
readelf - Displays information from any ELF format object file.
size - Lists the section sizes of an object or archive file.

strings - Lists printable strings from files.

strip - Discards symbols.

windme - A Windows compatible message compiler.
windres - A compiler for Windows resource files.

PlP
Cle|s

n It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The gprofng Wiki on sourceware.org

BINUTILS Wiki 9" | Search |
sel.. gprofng

HomePage RecentChanges | FindPage HelpContents -mrofng.

~ Immutable Page Info Aftachments More Actions: v

The gprofng Application Profiling Tool

Contents

1.
2.
3
4

What is gprofng?
The main features of gprofng
. The gprofng tools
. Afirst set of examples
1. About the example program
2. How to get a basic profile
3. Afirst example of customizetion
Display source code and assembly listings
Scripting
Support for multithreading
Hardware event counters
1. What are hardware event counters?
2. How to select the events to be monitored
Q. How does the data collection work?
10. Tips and fricks
1. Build gprofng for 32 bit profiling
11. Frequently Asked Questions (FAQ)
12. Known Limitations

NSO

1. What is gprofng?

Gprofng is a next generation application profiling tool. It supports the profiling of programs written in C, C++,
Java, or Scala running on systems using pracessors from Intel, AMD, or Arm. The extent of the support is
__processor dependent, but the basic views are always available. p

n It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

More Info

Linux Toolchain & Tracing

gprofng: The Next Generation GNU Profiling Tool

January 26, 2023 | 10 minute read

@ :
o Elena Zannoni

This blog entry was contributed by: Ruud van der Pas, Kurt Goebel, Vladimir Mezentsev. They work in the Oracle
Linux Toolchain Team and are involved with gprofng on a daily basis.

gprofng
iy —0

What is gprofng?

Gprofng is a next generation application profiling tool. It supports the profiling of programs written in C, C++, Java, or Scala
running on systems using processors from Intel, AMD, Arm, or compatible vendors. The extent of the support is processor
dependent, but the basic views are always available.

Two distinct steps are needed to produce a profile. In the first step, the performance data is collected. This information is
stored in a directory called the experiment directory. There are several tools available to display and analyze the information
stored in this directory.

Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Part I - Tips and Tricks

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

OpenMP and Performance

You can get good performance with OpenMP
And your code will scale
If you do things in the right way

Easy -ne Stupid

PlP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The OpenMP Performance Court

In this talk we cover the basics how to get good performance
Follow the guidelines and the performance should be decent
An OpenMP compiler and runtime should Do The Right Thing

You may not get blazing scalability, but ...

The lawyers in the OpenMP Performance Court have no case
against you

SEE

VW It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Ease of Use ?

The ease of use of OpenMP is a mixed blessing
(but I still prefer it over the alternative)

Ideas are easy and quick to implement

But some constructs are more expensive than others

will,
If you write dumb code, you p?ycuLly get dumb performance

Just don’t blame OpenMP, please*

*) It Is fine to blame the weather, or politicians, or both though @@

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

My Preferred Tuning Strategy

In terms of complexity, use the most efficient algorithm

Select a profiling tool

Find the highest level of parallelism
(this should however provide enough work to use many threads)

Use OpenMP in an efficient way

Be prepared to have to do some performance experiments

Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Things You Need To Know

PlP
Cle|S

WAl It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

About Caches

Caches are fast buffers, used for data and instructions

For cost and performance reasons, a modern processor has a
hierarchy of caches

Some caches are private to a core, others are shared

Let’s look at a typical example

Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

A Typical Memory Hierarchy

D
Core
I

The unit of transfer
is a “cache line”

A cache line contains
multiple elements

O o ¢ ¢ 060 =

Capacity Increases

Speed Decreases

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Multicore and Hardware Threads

“SMP on a Chip”

m

Multicore Node

Hardware Threads

Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

About Cores and Hardware Threads

A core may, or may not, support hardware threads

This is part of the design

These hardware threads may accelerate the execution of a
single application, or improve the throughput of a workload

The idea is that the pipeline is used by another thread In case
the current thread is idle

Each hardware thread has a unique ID in the system
ClE[S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

How Hardware Threads Work

No hardware
threads

saved time

A H §EBE B

Two hardware
threads

Time

PlP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Hardware Thread IDs

s
S 0
o
= 2
S 4
g
2 6
n
s
S 1
>

g = 3
Q

U’ S 5
=
S 7
- P[P

Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

How To Not Write Dumb OpenMP Code

PlP
Cle|S

yZW It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Basics For All Users

Do not parallelize what does not matter

Never tune your code without using a profiling tool

Do not share data unless you have to
(in other words, use private data as much as you can)

Think BIG
(maximize the size of the parallel regions)

One “parallel for” is fine. More, back to back, is EVIL.
C|E[S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Wrong and Right Way Of Doing Things

#pragma omp parallel f£¢ #pragma omp parallel
{ ode block 1> {

#pragma omp for
{ <code block 1> }

tpragifa omp parallel fC
<code block n> }

#pragma omp for nowait
{ <code block n> }
} // End of parallel region

Parallel region overhead repeated “n” times Parallel region overhead only once
No potential for the “nowait” clause Potential for the “nowait” clause

PP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

More Basics

Every barrier matters
(and please use them carefully)

The same is true for locks and critical regions
(use atomic constructs where possible)

EVERYTHING Matters
(minor overheads get out of hand eventually)

‘E} ’Eﬁ]
L

Cle|S

yy@l It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Another Example

fpragma omp single #pragma omp single
{ {
<some code> <some code>
} // End of single region } // End of single region
fpragma omp barrier Mer

<more code> <more code>

The second barrier is redundant because the single
construct has an implied barrier already

(this second barrier will still take time though)

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

More Things to Consider

Identify opportunities to use the nowait clause
(a very powerful feature, but be aware of data races)

Use the schedule clause in case of load balancing issues

Avoid nested parallelism
(the nested barriers really add up)

Consider tasking instead
(provides much more flexibility and finer granularity)
Cle[s

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Case Study - Do More Work and Save Time

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

A Very Time Consuming Part in the Code

a[npoint] = value;
#pragma omp parallel ..

{

#pragma omp for
for (int64 t k=0; k<npoint; k++)

alk] = -1;
#pragma omp for

for (int64 t k=npoint+l; k<n; k++)
alk] = -1;

<more code>

PlP
Cle|s

H It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

} // End of parallel region

So What Is Wrong With This Then?

a[npoint] = value; v There are 2 barriers
fpragma omp parallel ..
{ y v Two times the serial and parallel overhead
pragma omp for
for (int64 t k=0; k<npoint; k++) .
afk] = -1; v Performance benefit depends on the value

#pragma omp for

for (int64 _t k=npoint+l; k<n; k++)
alk] = -1;

<more code>

of variables “npoint” and “n”

} // End of parallel region

PlP
Cle|S

Copyright (©) 2024 by Ruud van der Pas

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Sequence Of Operations

0 ... npoint-1

-1

-1

-1

barrier
.

npoint+1 ... n-1
G————————

-1

-1

barrier
.

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Cle|S

Copyright (©) 2024 by Ruud van der Pas

The Final Result

0 ... npoint-1
A e A A vale| 4 . 1 -
‘The Idea

npoint+1 ... n-1

PlP
Cle|S

W It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Modified Code

#tpragma omp parallel .. v Only ohe barrier
{
#pragma omp for v One time the serial and parallel overhead
for (int64 t k=0; k<n; k++)
afk] = -1; v' The performance benefit depends on the
#pragma omp single nowait value Of variable “n” only
{a[npoint] = value;}

<more code>

} // End of parallel region

PlP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Case Study - Graph Analysis

PlP
Cle|S

H It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Application

The OpenMP reference version of the Graph 500 benchmark

Structure of the code:

e Construct an undirected graph of the specified size

* Randomly select a key and conduct a BFS search :I Repeat
o Verify the resultis a tree <n> times
For the benchmark score, only the search time matters

|E) |EJ
r|\r

Cle|S

cyAl It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Testing Circumstances

The code uses a parameter SCALE to set the size of the graph

The value used for SCALE is 24 (~9 GB of RAM used)

All experiments were conducted In the Oracle Cloud (“OCI")
Used a VM instance with 8 Intel Skylake cores (16 threads)

The Oracle Linux OS + gcc were used to build and run the jobs

The gprofng profiling tool was used to make the profiles 3

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Dynamic Behaviour

File Views Metrics Tools Help

BBEVDT VYe©

e e 190
1
ilE
1T:1 |
O
— T e
@ [J @ (J
Graph Generation Search and verification for 64 keys
ﬁ—
,,,,,,
Rel (sec) 300 200 100 0 100 200 300 400 500 600 700 800 900 1,000

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Scalablility is Disappointing

400 S 16 v The data is for a 9 GB
o | 347 The parallel speed et 2 '§ sized problem (SCALE 24)
. up is 3.2x only et £ v Search time reduces as
T 300 - 5 © 12 g,
S 275 e = threads are added
Q 250 . 10 G v B] Il 16
5 - = 2 enefit from a
é 200 . 50 et g ‘q>'j (hyper) threads
£ 150 et 144 31 6 % v The 3.2x parallel speed
2 N Lol 110 o up is disappointing
o 100 . 4 3 e
7 ' L@ s PO ® B v The parallel scalability is
50 o o R @t R e 2 & similar for larger graphs
"SYEK Te@ecc & V) gergrap
0 - - - - - - - - 0
1 2 4 6 8 10 12 14 16
Number of OpenMP Threads

System: A VM with 8 Intel Xeon Platinum 8167M CPU @ 2.00GHz (“Skylake”) cores, 16 hardware threads

PlP
Cle|S

‘'l It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Action Plan

Used a profiling tool to identify the time consuming parts
Found several opportunities to improve the OpenMP part
These are actually shown earlier in this talk

Although simple changes, the iImprovement is substantial:

Cle|S

"Nl It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Performance Of The Original and Modified Code

B Modified - Speed up Linear

Original

400

@ Speed up Original A Speed up Mod.lﬁed 16 v A noticeable reduction in

the search time at 4
threads and beyond

than the original code E
00 et > 9 v The parallel speed up
250 e 10 - increases to 6.5x
200 N | The search time is
! reduced by 2x

150 - L6
100 |

50 - 2

0 - 0

Number of OpenMP Threads

350 - The modified version is 2x faster e 14

Search time in seconds
o0
Speed up relative to single thread
N

PlP
Cle|S

'yl It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Are We Done Tuning
This Code?

PlP
Cle|S

'l It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Are We Done Yet?

The 2x reduction in the search time is encouraging
The efforts to achieve this have been limited
The question is whether there is more to be gained

Let’s look at the dynamic behaviour of the threads:

‘ﬁ-. o
-_— i

p— '

V.8 It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

A Comparison Between 1 And 2 Threads

File Views Metrics Tocls Help

K “B = 'B W P Find:] Match Case
Ho——0 ® &S 9F @ | crowuaby rtreed -

| Timeized 0 190 200 30 400 500 6g0 700 800 900 1000 1100 1200 1300

1 (Rase)

| bl

1T1

i3]
2T:2 |
o
1=
fo)
S’

[d @ @
,,,,,,,, R e —————— Verl lcatlon
' Relative(sec) -100 0 100 200 300 400 500 600 700 800 900 1,000 1,100
]

PlP
Cle|S

U3 It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Zoom In On The Second Thread

|
. main thread is fine
| [S]
o second thread has gaps
B scarch

B Verification

PlP
Cle|S

I It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

vvvvvvvvvvvvvvvvvvvvvvv

How About 4 Threads?

Fil Views cs H _
B @ @ <5 W v Q @ Find: | ‘] Match Case

i N I S . e W 1 h d
- Adding threads

T g makes things worse
| Qv E—

baadd B B L R B L B R B B L B L B B L L L B L B L L L L AL L L B B L B L

Cle|S

'yl It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Zoom In Some More

I?:S @ @ "6 {D \ ? @, ¢o} i
Ho=—6 ® (&S AP | & @ | orowaabyltea || :
Time(sec) i 120 130 140 s g
1
o (P EE T T T T R L
1T:1 I
@

The gaps are always in the red coloured
functlon that implements the search PIP
Relative(sec) {' - 1I0 - 2I0 S 3'0 S 4I0 """""" SIO o @

't 3 It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

CPU Time Variations

CPU Time Distribution The load imbalance
goo /92 o
increases as the
thread count goes up
§ 600 2 1.36
§ 4 1.63
% 8 1.91
=
i: 400
-
o
OJ
©
({v]
g | I I I I
<—> —————— A ———————————————————————— P|P
2 threads 4 threads 8 threads cle[s

.M It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Issue

#pragma omp for
for (int64_t k = kl; k < oldk2; ++k) ({ Fixed length loop
const int64 t v = vlist[k];
const int64 t veo = XENDOFF (V) ;
for (int64 t vo = XOFF (V)
const int64 t j = xad;
if (bfs tree]

o) { Irregular length loop

Irregular control flow

} // End of if-then-else

} // End of if <
} // End of if
} // End of for-loop on vo E
} // End of parallel for-loop on k E;EE

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Observations and the Solution

The #pragma omp for loop uses default scheduling

The default is implementation dependent, but is “static” here
In this case, that leads to load balancing issues

The solution: #pragma omp for schedule(dynamic)

Or an even better solution: #pragma omp for schedule(runtime)

Our setting: $ export OMP_SCHEDULE="dynamic,25" 3

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

By The Way

How Do You Know The Chunk Size Should Be 25?

Cr all

Trial And Error

PlP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Performance With Dynamic Scheduling Added

400

Search time in seconds

Original M Modified B Modified dynamic .- Speed up Linear @ Speed up Original ‘A Speed up Modified @ Modified dynamic

350 |

300

250 |

200 |

150 -

100 -

50 -

16
A 1% slow down =
14 ©
34 0,_9
i -
. 12
(Near) linear scaling Lo " 9 5x ?:o
forup to 8 threads .-~ :. 10 -3
o’ ’ .. 0000 .. ©°° B
211 T AR 8 w
o’ o 0o °* . .E
6 =
o o ° q)
o © . -
Q.
4 5
..... . e 0o 06 0 © ‘ §
2 o
m 41 9

0

0 -

10 12
Number of OpenMP Threads

The modified version is 3x faster

than the original code

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

/

4
4
v

A 1% slow down on a
single thread

Near linear scaling for
up to 8 threads

The parallel speed up
increased to 9.5x

The search time is
reduced by 3x

Cle|S

Copyright (©) 2024 by Ruud van der Pas

Really Important

Always Verify the Behaviour!

PlP
Cle|S

YW It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Before and After (8 Threads) The /000'

/
e aT) 8] s~ g '”O'ee o 7oy N ce

30/79,

—~
| a
o
| ma

L' _j_'" Orlgmal static schedulmg mrm

!i;lgi;ii

—
:
|
:
:
I
:
|
:
I
:
:
i
:
|
:
:
|
:
:
:
i
;
i

= Dynamic

-— scheduling

eele e e e

@

PlP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Load Imbalance is Indeed Gone
CPU Time Distribution \

300
282

8 Original 1.91
225 8 Modified 1.01

0

c

o,

;

P

|I iiagJILLTIT
z

‘; Static schedulmg Dynamic scheduling
O

(<)

—

PlP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

8 threads 8 threads

Part I - Takeaways

There are many opportunities to improve the performance
If you follow the advice given, you should be fine
(in most of the cases, since there are always exceptions)
Use a profiling tool to guide you

Don’t guess, since it is likely you might be wrong

SEE

YAl It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Part Il - The Joy Of Computer Memory

PlP
Cle|S

H It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Motivation Of This Work

Question: “Why Do You Rob Banks ?”

Answer: “Because That's Where The Money Is”

Willie Sutton - Bank Robber, 1952

Question: “Why Do You Focus On Memory ?”

Answer: “Because That's Where The Bottleneck Is”

Ruud van der Pas - Performance Geek, 2024

PlP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

When Do Things Get Harder?

Memory Access “Just Happens”

There are however two cases to watch out for

NUMA and False Sharing

They have nothing to do with OpenMP though and are a
characteristic of a shared memory architecture

‘E‘_} ‘5‘:}
|\ r

Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

What is False Sharing?

A corner case, but it may affect you

Happens when multiple threads modify the same cache line at
the same time

This results in the cache line to move around
(plus the additional cost of the cache coherence)

‘ ») ‘ =)
i |1

Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

An Example of False Sharing

Vector a
#pragma omp parallel shared(a) nnnn
{
int TID = omp get thread num(); m:l:l:l TID=0
a[TID] = 0.0; // False Sharing 0.0 . 0.0 TID = 2
TID =1

} // End of parallel region

0.0 0.0 0.0 0.0 gub i

PlP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Now Things Are About To Get “Interesting”

False Sharing is important, but a corner case

Non-Uniform Memory Access (NUMA) is much more general and
more likely to affect the performance of your code

The remainder of this talk is about NUMA
(you still have 10 seconds to leave, but please don’t scream too loudly)

PlP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

NUMA in Contemporary Systems

PlP
Cle|S

YW It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Modern Times

Non-Uniform Memory Access (NUMA) used to be the realm of
large servers only

This is no longer true and therefore a concern to all
The tricky thing is that “things just work”

But do you know how efficiently your code performs?

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

NUMA - The System Most of Us Use Today

A Generic, but very Common and Contemporary NUMA System

Node

Node

Cores

Cores

E

o

| |
| Scalable Bandwidth
-
|

Cache Coherent
Interconnect

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

_
uc

<—

Cores

_
A 4

—>

Cores

3PON

3PON

PlP
Cle|S

Copyright (©) 2024 by Ruud van der Pas

The Developer’s View

My My
Threads Threads
My My
Threads Threads

PlP
Cle|S

YAl It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The NUMA View

Memory is physically distributed, but logically shared
Shared data is accessible to all threads
You don’t know where the data is and it doesn’t matter

Unless you care about performance ...

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Local Versus Remote Access Times

-~

My Thread
Executes Here

My
Threads

Remote Access
(Slow)

S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

My
Threads

My
Threads

PlP
Cle|S

Copyright (©) 2024 by Ruud van der Pas

Tuning for a NUMA System

Tuning for NUMA is about keeping threads and their data close

In OpenMP, a thread may be moved to the data

Not the other way round, because that is more expensive

The affinity constructs in OpenMP control where threads run

This is a powerful feature, but it is up to you to get it right
(in this context,”right” is not about correctness, but about the performance)

SEE

yA\'l It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

About NUMA and Data Placement

PlP
Cle|S

yAll I/t Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The First Touch Data Placement Policy

So where does data get allocated then?

The First Touch Placement policy allocates the data page in the
memory closest to the thread accessing this page for the first
time

This policy is the default on Linux and other OSes
It is the right thing to do for a sequential application
But this may not work so well in a parallel application

ClE[S

y#A It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

First Touch and Parallel Computing

First Touch works fine, but what if a single thread initializes
most, or all of the data?

Then, all the data ends up in the memory of a single node

This increases memory access times for certain threads
(and may also cause congestion on the network)

Luckily, the solution is (often) surprisingly simple

SEE

L3 It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

A Sequential Initialization

for (int64 t i=0; i<n; i++)
a[i] = 0;

One thread executes this loop

!
_Atof "1 nasinge ose 8

Note: The allocation is on a virtual memory page basis

Cle|S

Y It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Leverage the First Touch Placement Policy

#pragma omp parallel for schedule(static)
for (int64_t 1=0; 1i<n; i++) __

a[i] = 0; .

Four threads execute this loop

l _

The data Is spread out

Note: The allocation is on a virtual memory page basis

PlP
Cle|S

143 It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Tricky Part

Q: How about 1/70 ?

A: Add a redundant parallel initialization before reading the data
Q: What if the data access pattern is irregular?

A: Randomize the data placement (e.g. use the numactl tool)

‘ ») ‘ =)
I

Cle|S

Q] It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

About Memory Allocations

Do not use calloc for global memory allocation

Okay to use within a single thread

PlP
Cle|S

y#4l It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

OpenMP Support for NUMA Systems

PlP
Cle|S

1t It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

OpenMP Places

In a NUMA system, it matters where your threads and data are
In OpenMP, places are used to define where threads may run
A place is defined by a symbolic name, or a set of numbers:

* An example of a symbolic name: cores
* An example of a set: 1,5, 7, 11, 13

Note that a mix of these two concepts is not allowed
clels

il It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

OpenMP Support For Thread Affinity

Philosophy:

* The data is where it happens to be
e Move a thread to the data it needs most

There are two environment variables to control this

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Affinity Related OpenMP Environment Variables

OMP_PLACES
Defines where threads may run
OMP_PROC_BIND

Defines how threads map onto the OpenMP places

Note: Highly recommended to also set OMP_DISPLAY ENV=verbose

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Placement Targets Supported by OMP_PLACES

threads A hardware thread
cores A core
Il_caches A set of cores that share the last level cache

A set of cores that share a memory and have

numa_domains .
the same distance to that memory

sockets A single socket

PlP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Hardware Thread ID Support to Define Places

The abstract names are preferred

The OMP_PLACES variable also supports hardware thread IDs
Places can be defined using any sequence of valid numbers
A compact set notation is supported as well
Notation: {start:total:increment}

For example: {0:4:2} expands to {0,2,4,6} 3

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Examples How to Use OMP_PLACES

Threads are scheduled on the NUMA domains in the system:

S export OMP PLACES=numa domains

Use Hardware Thread IDs 0, 8 16, and 24:

S export OMP PLACES=“{0},{8},{16},{24}"

S export OMP PLACES={0}:4:8

PlP
Cle|S

JW It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Map Threads onto Places

Use variable OMP_PROC BIND to map threads onto places

The settings define the mapping of threads onto places

The following settings are supported:
true, false, primary, close, or spread

The definitions of close and spread are in terms of the place list

|E) |EJ
r|\r

Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

An Example Using Places and Binding

Threads are scheduled on the cores in the system:

S export OMP PLACES=cores

And they should be placed on cores as far away from each other
as possible:

S export OMP PROC BIND=spread

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Remember This Example?

#pragma omp parallel for schedule(static)

af[i] = 0; III III

$ export OMP PLACES=numa_domains
Four threads execute this loop S export OMP_PROC_BIND=spread

| | _ _

Data placement depends on
where threads execute

Use Affinity Controls

Cle|S

y@l It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

NUMA Diagnostics

It Is very easy to make a mistake with the NUMA setup
Two very simple, but yet powerful features to assist:
Variable OMP_DISPLAY ENV echoes the initial settings
Variable OMP_DISPLAY AFFINITY prints information at run time

Highly recommended to use these diagnostic features!

PlP
Cle|S

:t:-3l It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

A Performance Tuning Example

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Matrix Times Vector Multiplication: a = B*c

#pragma omp parallel for default (none) \
shared(m,n,a,B,c) schedule(static)

for (int 1=0; 1i<m; 1++4)

{ —}

double sum = 0.0;

for (int jJ=0; j<n; J++) :
sum += B[1] [J]*c[]]’

af[i] = sum;

}

|l
*

An embarrasingly parallel algorithm!

(on paper)

Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Performance Using 64 Threads*

Performance of the matrix-vector algorithm (4096x4096)

6 ..

U
L]
';

=N

Performance in Gflop/s
N W

—

o

Number of OpenMP Threads

*) The machine characteristics will be disclosed shortly

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

This is a highly parallel

algorithm, but adding threads
... u degrades the performance!

PlP
Cle|S

Copyright (©) 2024 by Ruud van der Pas

Automatic NUMA Balancing In Linux

This is an interesting feature available in Linux

"Automatic NUMA balancing moves tasks (which can be threads or processes) closer to
the memory they are accessing. It also moves application data to memory closer to the
tasks that reference it. This is all done automatically by the kernel when automatic NUMA

balancing is active.”
“Virtualization Tuning and Optimization Guide”, Section 9.2, Red Hat documentation

echo 1 > /proc/sys/kernel/numa_ balancing enable

echo 0 > /proc/sys/kernel/numa balancing disable

‘E} ’Eﬁ]
L

Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Performance Using 64 Threads*

Performance of the matrix-vector algorithm (4096x4096)

o B Wwithout NUMA Balancing A With NUMA Balancing
BB [oh s NUMA balancing gives a 1.6x
S .l . S Improvement, but the
G performance is still
e
o . ®.. rather poor
§ 5 eerrerrrrrerrrierr) 9...9...0. 0. 0 o} 0. 0. 0 o g .b...’............................. p
C
E 3 ...
L2l
D
Q. e T

0 .

0 8 16 24 32 40 48 56 64

Number of OpenMP Threads

PlP
Cle|S

E It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Let’s Check The System
We Are Using!

PlP
Cle|S

=YW It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The NUMA Information for the System

$ 1scpu 8 cores/node node distances:
node 0 1 2 3 4 5 6 7

lllllllllliﬁlllllllllllln‘ul.. O: 10 16 16 16 32 32 32 32
‘NUMA node0 CPU(s)=i0-7 ¢ , 64-71 16 10 16 16 32 32 32 32
Y 16 16 10 16 32 32 32 32

l6é 16 16 10 32 32 32 32
32 32 32 32 10 16 16 16
32 32 32 32 16 10 16 16
32 32 32 32 16 16 10 16
32 32 32 32 16 16 16 10

:NUMA nodel CPU(s):: 8215 , 72-79

dU(s):=16-23, 80-87
s):224-31, 88-95
s):"32-39, 96-103
-NUMA node5 CPU(s)..4O -47,104-111
"NUMA node6 CPU(s):*48-55,112-119
-NUMA node7 CPU(s)::56-63,120-127

NOoOUOUTbd W=

S 2 columns => 2 hardware threads/core

e S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The NUMA Structure of the System*

Consists of 8 NUMA nodes according to “Iscpu”
There are two levels of NUMA (“16"” and “32")
Each NUMA node has 8 cores with 2 hardware threads each

In total the system has 64 cores and 128 hardware threads

*) This is an AMD EPYC “Naples” 2 socket server (yes, | know, it is relatively old :-))

‘ ») ‘ =)
I

Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Abstract System Topology (numacti -H)

Even longer access time (“32")

Remote Remote Remote Remote
Node Node Node Node
Center
Node
Remote Remote Remote
Node Node Node

Longer access time (“16")

PlP
Cle|S

Y@l It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Example - NUMA Node 0 (Iscpu output)

RN TR TR

8 cores
16 hardware threads

All cores and hardware threads share the memory in the node g
==

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Recall the Code Used Here (a = B*c)

#pragma omp parallel for default (none) \
shared(m,n,a,B,c) schedule(static)

for (int 1=0; 1i<m; 1++4)

{ —}

double sum = 0.0;

for (int jJ=0; j<n; J++) i
sum += B[1] [J]*c[]]’

af[i] = sum;

|l
*

}

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Is There Anything Wrong Here?

Nothing wrong with this code
But this code is not NUMA aware
The data initialization is sequential
Therefore, all data ends up in the memory of a single node

Let’s look at a more NUMA friendly data initialization

Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

The Original Data Initialization

for (int64 t j=0; j<n; j++)
c[j] = 1.0;

for (int64 t i=0; i<m; i++) {
a[i1] = -1957;
for (int64 t j=0; j<n; j++)
B[1][]] 1;

PlP
Cle|S

Copyright (©) 2024 by Ruud van der Pas

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

A NUMA Friendly Data Initialization

#pragma omp parallel o

{ i . *
#pragma omp for schedule(static)
for (int64 t j=0; j<n; jJ++) 3 B C

c[j] = 1.0;

#pragma omp for schedule(static)

for (int64 t 1=0; i<m; 1i++) {
af[i] = -1957;
for (int64 t j=0; j<n; J++)

B[1][]] = 1;
}
} // End of parallel region

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Control the Mapping of Threads

The Thread Placement Goal
Distribute the OpenMP threads evenly across the cores and
nodes

As an example, use the first hardware thread of the first two
cores of all the nodes

I

PlP
Cle|S

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Example - The Target Hardware Thread Numbers

@ﬂ@@@@ LTI
L I@@@@@

I@@@@ﬂ I@@@@ﬂ
I@@@@ﬂ I@@@@ﬂ

An Example How to Use OpenMP Affinity

Expands to the first hardware thread on the first 2 cores on each node:

{0}, {8}, {16}, {24}, {32}, {40}, {48}, {56}, {1},{9},{17},{25},{33},{41},{49},{57}

N/

S export OMP PLACES={0}:8:8,{1}:8:8

NUMA
NUMA
NUMA
NUMA
NUMA
NUMA
NUMA
NUMA

S export OMP PROC BIND=close
S export OMP NUM THREADS=16

S ./a.out

Note: Setting OMP_DISPLAY ENV=verbose is your friend here!

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

nodeO
nodel
node2
node3
node4
nodeb5
nodeb6
node7

CPU(s):
CPU(s):
CPU(s):
CPU(s):
CPU(s):
CPU(s):
CPU(s):
CPU(s):

0-7
8-15
16-23
24-31
32-39
40-47
48-55
56-63

- - - - - - - -

64-71
72-79
80-87
88-95

96-103

104-1
112-1
120-1

11
19
27

PlP
Cle|S

Copyright (©) 2024 by Ruud van der Pas

The Performance for a 4096x4096 matrix

A First Touch not leveraged @® First Touch leveraged

180 Performance in Gflop/s
160 First Touch tuning improves the v
~ . First Touch First Touch Touch
o 140 performance by a factor of 22! K
(T - 1 51 51 1,0
W 120
= 100 Much better scaling A 8,0 113,3 14,2
v (34x using 64 threads) . 8,0 175,4 21,9
S 80 =
E 60 1,6 34,4
£
g 40 Recall that the Only difference iS

DO |l in the initialization of the data
0 YRR A Y EEEEEERE REEEERY CEREEIINEY I
0 8 16 24 32 40 48 56 64

Number of OpenMP Threads

Oracle Linux with the gcc compiler a E
2 socket system (2 AMD EPYC 7551 with 64 cores) g

NUMA balancing on; negative scaling for version without FT and balancing off
m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Part Il - Takeaways

Data and thread placement matter (a lot)
Important to leverage First Touch Data Placement
OpenMP has elegant, yet powerful, support for NUMA

The NUMA support in OpenMP continues to evolve and expand

PIP
CE

It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Wrapping Things Up

Think Ahead

Follow the tuning guidelines given in this talk
Always use a profiling tool to guide the tuning efforts

Performance tuning is a frustrating and iterative process

In may cases, a performance “mystery” is explained by NUMA
effects, False Sharing, or both

‘D; ‘:J
I

m It Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen Copyright (©) 2024 by Ruud van der Pas

Bad OpentP

Not Scal

