
Copyright (©) 2023 by Ruud van der Pas“It Is Okay To Be Lazy” - PPCES 2023, March 13-17, RWTH Aachen1

Ruud van der Pas
Senior Principal Software Engineer

Oracle Linux and Virtualization Engineering
Oracle, USA

PPCES 2024
March 11-15, 2024

RWTH Aachen University

“It Is Okay To Be Lazy”

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Previously, I worked at the University of Utrecht, Convex Computer,
SGI, and Sun Microsystems

My background is in mathematics and physics

$ whoishe

2

Currently I work in the Oracle Linux Engineering organization

I have been involved with OpenMP since the introduction

I am passionate about performance and OpenMP in particular

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Agenda

3

Part I - Tips and Tricks	 09:00 - 09:45

Q and (some) A	

Part II - The Joy of Computer Memory	 09:45 - 10:30

Prologue

A Well Deserved 10 Minute Break

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen4

Prologue

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Your OneStop Place for OpenMP

5

The number of members
continues to increase!

https://www.openmp.org

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Food for the Eyes and Brains

6

OpenMP 2.5 and
intro Parallel

Computing

Covers the OpenMP
Basics to get started

Focus on the
Advanced Features

What goes on
under the hood?

Must read for users
of GPUs in OpenMP

~ 20 $US ~ 40 $US ~ 50 $US ~ 70 $US ~ 80 $US

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen7

Intermezzo - The gprofng Tool

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

About gprofng

8

Select the one that you prefer

There are many profiling tools available

The gprofng profiling tool is part of GNU binutils

It is the tool that I used for the profiling views in this talk

And yes, I am involved with the development ;-)

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Source Code is in GNU Binutils

The binutils Home Page:
https://www.gnu.org/software/binutils/

gprofng - Collects and displays application performance data.

Hyperlink to the gprofng Wiki

9

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The gprofng Wiki on sourceware.org

10

Work in progress Expanding rapidly

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

More Info

11

https://blogs.oracle.com/linux/post/

gprofng-the-next-generation-gnu-profiling-tool

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen12

Part I - Tips and Tricks

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

OpenMP and Performance

13

And your code will scale

If you do things in the right way

Easy -ne Stupid

You can get good performance with OpenMP

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The OpenMP Performance Court

14

In this talk we cover the basics how to get good performance

Follow the guidelines and the performance should be decent

An OpenMP compiler and runtime should Do The Right Thing

You may not get blazing scalability, but …

The lawyers in the OpenMP Performance Court have no case
against you

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Ease of Use ?

15

The ease of use of OpenMP is a mixed blessing
(but I still prefer it over the alternative)

Ideas are easy and quick to implement

But some constructs are more expensive than others

If you write dumb code, you probably get dumb performance

Just don’t blame OpenMP, please*

*) It is fine to blame the weather, or politicians, or both though

will

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

My Preferred Tuning Strategy

16

In terms of complexity, use the most efficient algorithm

Select a profiling tool

Find the highest level of parallelism
(this should however provide enough work to use many threads)

Use OpenMP in an efficient way

Be prepared to have to do some performance experiments

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen17

Things You Need To Know

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

About Caches

18

Caches are fast buffers, used for data and instructions

For cost and performance reasons, a modern processor has a
hierarchy of caches

Some caches are private to a core, others are shared

Let’s look at a typical example

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

M
em

or
yL2

D

I
Core

A Typical Memory Hierarchy

19

Core
D

L2
I

L3
(LLC)

Capacity Increases

Speed Decreases

The unit of transfer
is a “cache line”

A cache line contains
multiple elements

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Multicore and Hardware Threads

20

Core

Memory

Core Core

Multicore Node

“SMP on a Chip” Core

Hardware Threads

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

About Cores and Hardware Threads

21

A core may, or may not, support hardware threads

This is part of the design

These hardware threads may accelerate the execution of a
single application, or improve the throughput of a workload

The idea is that the pipeline is used by another thread in case
the current thread is idle

Each hardware thread has a unique ID in the system

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

How Hardware Threads Work

22

Time

No hardware
threads

Two hardware
threads

saved time

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Hardware Thread IDs

23

Co
re

H
ar

dw
ar

e
Th

re
ad

s

Co
re

H
ar

dw
ar

e
Th

re
ad

s

0

2
4

6

1

3
5

7

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen24

How To Not Write Dumb OpenMP Code

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Basics For All Users

25

Never tune your code without using a profiling tool

Do not share data unless you have to
(in other words, use private data as much as you can)

Do not parallelize what does not matter

One “parallel for” is fine. More, back to back, is EVIL.

Think BIG
(maximize the size of the parallel regions)

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Wrong and Right Way Of Doing Things

26

#pragma omp parallel for
 { <code block 1> }

#pragma omp parallel for
 { <code block n> }

Parallel region overhead repeated “n” times
No potential for the “nowait” clause

#pragma omp parallel
{
 #pragma omp for
 { <code block 1> }

 #pragma omp for nowait
 { <code block n> }
} // End of parallel region

Parallel region overhead only once
Potential for the “nowait” clause

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

More Basics

27

The same is true for locks and critical regions
(use atomic constructs where possible)

Every barrier matters
(and please use them carefully)

EVERYTHING Matters
(minor overheads get out of hand eventually)

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Another Example

28

#pragma omp single
{
 <some code>
} // End of single region

#pragma omp barrier

 <more code>

#pragma omp single
{
 <some code>
} // End of single region

#pragma omp barrier

 <more code>

The second barrier is redundant because the single
construct has an implied barrier already

(this second barrier will still take time though)

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

More Things to Consider

29

(a very powerful feature, but be aware of data races)

Use the schedule clause in case of load balancing issues

Identify opportunities to use the nowait clause

Avoid nested parallelism
(the nested barriers really add up)

Consider tasking instead
(provides much more flexibility and finer granularity)

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen30

Case Study - Do More Work and Save Time

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

A Very Time Consuming Part in the Code

31

a[npoint] = value;
#pragma omp parallel …
{

} // End of parallel region

#pragma omp for
 for (int64_t k=0; k<npoint; k++)
 a[k] = -1;
#pragma omp for
 for (int64_t k=npoint+1; k<n; k++)
 a[k] = -1;

<more code>

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

So What Is Wrong With This Then?

32

a[npoint] = value;
#pragma omp parallel …
{

} // End of parallel region

#pragma omp for
 for (int64_t k=0; k<npoint; k++)
 a[k] = -1;
#pragma omp for
 for (int64_t k=npoint+1; k<n; k++)
 a[k] = -1;
<more code>

✓ There are 2 barriers

✓ Two times the serial and parallel overhead

✓ Performance benefit depends on the value
of variables “npoint” and “n”

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Sequence Of Operations

33

npoint

value

npoint+1 … n-1

-1 …. -1 -1

-1 -1 …. -1 -1 -1

0 … npoint-1

barrier

barrier

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Final Result

34

-1 -1 …. -1 -1 -1 value -1 … -1 -1

0 … npoint-1 npoint+1 … n-1npoint

-1 -1 …. -1 -1 -1 -1 -1 … -1 -1

0 … n-1

barrier
npoint

value

The Idea

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Modified Code

35

#pragma omp parallel …
{

} // End of parallel region

#pragma omp for
 for (int64_t k=0; k<n; k++)
 a[k] = -1;

#pragma omp single nowait
 {a[npoint] = value;}

<more code>

✓ Only one barrier

✓ One time the serial and parallel overhead

✓ The performance benefit depends on the
value of variable “n” only

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen36

Case Study - Graph Analysis

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Application

37

The OpenMP reference version of the Graph 500 benchmark

Structure of the code:

For the benchmark score, only the search time matters

• Construct an undirected graph of the specified size
• Randomly select a key and conduct a BFS search
• Verify the result is a tree

Repeat
<n> times

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Testing Circumstances

38

The code uses a parameter SCALE to set the size of the graph

The value used for SCALE is 24 (~9 GB of RAM used)

All experiments were conducted in the Oracle Cloud (“OCI”)

Used a VM instance with 8 Intel Skylake cores (16 threads)

The Oracle Linux OS + gcc were used to build and run the jobs

The gprofng profiling tool was used to make the profiles

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Dynamic Behaviour

39

Graph Generation Search and verification for 64 keys

Search Verification

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Scalability is Disappointing

40

✓ The data is for a 9 GB
sized problem (SCALE 24)

✓ Search time reduces as
threads are added

✓ Benefit from all 16
(hyper) threads

✓ The 3.2x parallel speed
up is disappointing

✓ The parallel scalability is
similar for larger graphsSp

ee
d

up
 re

la
tiv

e
to

 si
ng

le
 th

re
ad

0

2

4

6

8

10

12

14

16

Se
ar

ch
 ti

m
e

in
 se

co
nd

s

0

50

100

150

200

250

300

350

400

Number of OpenMP Threads
1 2 4 6 8 10 12 14 16

110120131
144

156
180

211

275

347 The parallel speed
up is 3.2x only

System: A VM with 8 Intel Xeon Platinum 8167M CPU @ 2.00GHz (“Skylake”) cores, 16 hardware threads

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Action Plan

41

Found several opportunities to improve the OpenMP part

These are actually shown earlier in this talk

Although simple changes, the improvement is substantial:

Used a profiling tool to identify the time consuming parts

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Sp
ee

d
up

 re
la

tiv
e

to
 si

ng
le

 th
re

ad

0

2

4

6

8

10

12

14

16

Se
ar

ch
 ti

m
e

in
 se

co
nd

s

0

50

100

150

200

250

300

350

400

Number of OpenMP Threads
1 2 4 6 8 10 12 14 16

Original Modified Speed up Linear Speed up Original Speed up Modified

5361677789
131

194

276

347

110120131
144

156
180

211

275

347

Performance Of The Original and Modified Code

42

✓ A noticeable reduction in
the search time at 4
threads and beyond

✓ The parallel speed up
increases to 6.5x

✓ The search time is
reduced by 2x

2x

The modified version is 2x faster
than the original code

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen43

Are We Done Tuning
This Code?

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Are We Done Yet?

44

The 2x reduction in the search time is encouraging

The efforts to achieve this have been limited

The question is whether there is more to be gained

Let’s look at the dynamic behaviour of the threads:

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

A Comparison Between 1 And 2 Threads

45

Faster

Search
Verification

Faster

Both phases benefit
from using 2 threads

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Zoom In On The Second Thread

46

Search
Verification

main thread is fine

second thread has gaps

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

How About 4 Threads?

47

Adding threads
makes things worse

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Zoom In Some More

48

The gaps are always in the red coloured
function that implements the search

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

CPU Time Distribution
Th

re
ad

 C
PU

 T
im

e
(s

ec
on

ds
)

0

200

400

600

800

148148150150156166
186

282289297
320

470

581

792

CPU Time Variations

49

2 threads 4 threads 8 threads

Threads Ratio Max/Min
CPU Times

2 1.36
4 1.63
8 1.91

The load imbalance
increases as the

thread count goes up

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Issue
#pragma omp for
for (int64_t k = k1; k < oldk2; ++k) {
 const int64_t v = vlist[k];
 const int64_t veo = XENDOFF(v);
 for (int64_t vo = XOFF(v); vo < veo; ++vo) {
 const int64_t j = xadj[vo];
 if (bfs_tree[j] == -1) {
 if (int64_cas (&bfs_tree[j], -1, v)) {
 if (kbuf < THREAD_BUF_LEN) {
 nbuf[kbuf++] = j;
 } else {
 int64_t voff = int64_fetch_add (&k2, THREAD_BUF_LEN);
 assert (voff + THREAD_BUF_LEN <= nv);
 for (int64_t vk = 0; vk < THREAD_BUF_LEN; ++vk)
 vlist[voff + vk] = nbuf[vk];
 nbuf[0] = j;
 kbuf = 1;
 } // End of if-then-else

 } // End of if
 } // End of if
 } // End of for-loop on vo
} // End of parallel for-loop on k

Fixed length loop

Irregular length loop

Irregular control flowIrregular workload

per k-iteration

50

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Observations and the Solution

The #pragma omp for loop uses default scheduling

The default is implementation dependent, but is “static” here

In this case, that leads to load balancing issues

The solution: #pragma omp for schedule(dynamic)

Or an even better solution: #pragma omp for schedule(runtime)

Our setting: $ export OMP_SCHEDULE=“dynamic,25”

51

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

By The Way

52

Crystal Ball

Trial And Error

How Do You Know The Chunk Size Should Be 25?

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Performance With Dynamic Scheduling Added

53

Sp
ee

d
up

 re
la

tiv
e

to
 si

ng
le

 th
re

ad

0

2

4

6

8

10

12

14

16

Se
ar

ch
 ti

m
e

in
 se

co
nd

s

0

50

100

150

200

250

300

350

400

Number of OpenMP Threads
1 2 4 6 8 10 12 14 16

Original Modified Modified dynamic Speed up Linear Speed up Original Speed up Modified Modified dynamic

373941444762
90

177

350

5361677789
131

194

276

347

110120131
144

156
180

211

275

347

✓ A 1% slow down on a
single thread

✓ Near linear scaling for
up to 8 threads

✓ The parallel speed up
increased to 9.5x

✓ The search time is
reduced by 3x

A 1% slow down

(Near) linear scaling
for up to 8 threads

3x

9.5x

The modified version is 3x faster
than the original code

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen54

Really Important

Always Verify the Behaviour!

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Before and After (8 Threads)

55

Original static scheduling

Dynamic
scheduling

The load imbalance
is indeed gone!

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

CPU Time Distribution

Th
re

ad
 C

PU
 T

im
e

(s
ec

on
ds

)

0

75

150

225

300

173174174174175175175176

148148150150156
166

186

282

The Load Imbalance is Indeed Gone

56

8 threads

Threads Version Ratio Max/Min
CPU Times

8 Original 1.91
8 Modified 1.01

8 threads

Static scheduling Dynamic scheduling

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Part I - Takeaways

57

There are many opportunities to improve the performance

If you follow the advice given, you should be fine

(in most of the cases, since there are always exceptions)

Use a profiling tool to guide you

Don’t guess, since it is likely you might be wrong

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen58

Part II - The Joy Of Computer Memory

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Motivation Of This Work

59

Question: “Why Do You Rob Banks ?”

Question: “Why Do You Focus On Memory ?”

Answer: “Because That’s Where The Money Is”
Willie Sutton – Bank Robber, 1952

Answer: “Because That’s Where The Bottleneck Is”

Ruud van der Pas – Performance Geek, 2024

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

When Do Things Get Harder?

60

There are however two cases to watch out for

Memory Access “Just Happens”

NUMA and False Sharing

They have nothing to do with OpenMP though and are a
characteristic of a shared memory architecture

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

What is False Sharing?

61

Happens when multiple threads modify the same cache line at
the same time

A corner case, but it may affect you

This results in the cache line to move around
(plus the additional cost of the cache coherence)

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

An Example of False Sharing

62

#pragma omp parallel shared(a)
{
 int TID = omp_get_thread_num();

 a[TID] = 0.0;

} // End of parallel region

a[TID] = 0.0; // False Sharing

0.0 TID = 0

0.00.0 TID = 2

TID = 10.0 0.0 0.0

0.0 0.0 TID = 30.0 0.0

Vector a

0 1 2 3

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Now Things Are About To Get “Interesting”

63

Non-Uniform Memory Access (NUMA) is much more general and
more likely to affect the performance of your code

False Sharing is important, but a corner case

The remainder of this talk is about NUMA
(you still have 10 seconds to leave, but please don’t scream too loudly)

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen64

NUMA in Contemporary Systems

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Modern Times

65

This is no longer true and therefore a concern to all

The tricky thing is that “things just work”

But do you know how efficiently your code performs?

Non-Uniform Memory Access (NUMA) used to be the realm of
large servers only

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

NUMA - The System Most of Us Use Today

66

A Generic, but very Common and Contemporary NUMA System
N

od
e

M
em

or
y

LL
CCores

N
ode

M
em

ory

LL
C Cores

N
od

e

M
em

or
y

LL
CCores

N
ode

M
em

ory

LL
C Cores

Cache Coherent
Interconnect

Single System Image

Scalable Bandwidth

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Developer’s View

67

M
y

 D
at

a
M

y
D

at
a M

y D
ata

M
y D

ata

MAGIC

My
Threads

My
Threads

My
Threads

My
Threads

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The NUMA View

68

Shared data is accessible to all threads

You don’t know where the data is and it doesn’t matter

Unless you care about performance …

Memory is physically distributed, but logically shared

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Local Versus Remote Access Times

69

My
Threads

My
Threads

My
Threads

My Thread
Executes Here

Local Access
(Fast) Remote Access

(Slow)

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Tuning for a NUMA System

70

Tuning for NUMA is about keeping threads and their data close

Not the other way round, because that is more expensive

The affinity constructs in OpenMP control where threads run

This is a powerful feature, but it is up to you to get it right
(in this context,”right” is not about correctness, but about the performance)

In OpenMP, a thread may be moved to the data

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen71

About NUMA and Data Placement

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The First Touch Data Placement Policy

72

The First Touch Placement policy allocates the data page in the
memory closest to the thread accessing this page for the first

time

This policy is the default on Linux and other OSes

So where does data get allocated then?

It is the right thing to do for a sequential application

But this may not work so well in a parallel application

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

First Touch and Parallel Computing

73

Then, all the data ends up in the memory of a single node

This increases memory access times for certain threads
(and may also cause congestion on the network)

First Touch works fine, but what if a single thread initializes
most, or all of the data?

Luckily, the solution is (often) surprisingly simple

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

A Sequential Initialization

74

for (int64_t i=0; i<n; i++)
 a[i] = 0;

Note: The allocation is on a virtual memory page basis

= Data

= Thread

One thread executes this loop

All of “a” is in a single node

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Leverage the First Touch Placement Policy

75

#pragma omp parallel for schedule(static)
for (int64_t i=0; i<n; i++)
 a[i] = 0;

= Data

= Thread

Four threads execute this loop

The data is spread out

Note: The allocation is on a virtual memory page basis

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Tricky Part

76

Q: How about I/O ?

A: Add a redundant parallel initialization before reading the data

Q: What if the data access pattern is irregular?

A: Randomize the data placement (e.g. use the numactl tool)

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

About Memory Allocations

77

Do not use calloc for global memory allocation

Okay to use within a single thread

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen78

OpenMP Support for NUMA Systems

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

OpenMP Places

79

In a NUMA system, it matters where your threads and data are

• An example of a symbolic name: cores
• An example of a set: 1, 5, 7, 11, 13

In OpenMP, places are used to define where threads may run

A place is defined by a symbolic name, or a set of numbers:

Note that a mix of these two concepts is not allowed

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

OpenMP Support For Thread Affinity

80

• The data is where it happens to be
• Move a thread to the data it needs most

There are two environment variables to control this

Philosophy:

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Affinity Related OpenMP Environment Variables

81

OMP_PROC_BIND

OMP_PLACES

Defines where threads may run

Defines how threads map onto the OpenMP places

Note: Highly recommended to also set OMP_DISPLAY_ENV=verbose

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Placement Targets Supported by OMP_PLACES

82

Keyword Place definition

threads A hardware thread

cores A core

ll_caches A set of cores that share the last level cache

numa_domains A set of cores that share a memory and have
the same distance to that memory

sockets A single socket

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Hardware Thread ID Support to Define Places

83

The abstract names are preferred

The OMP_PLACES variable also supports hardware thread IDs

Places can be defined using any sequence of valid numbers

A compact set notation is supported as well

Notation: {start:total:increment}

For example: {0:4:2} expands to {0,2,4,6}

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Examples How to Use OMP_PLACES

84

Use Hardware Thread IDs 0, 8, 16, and 24:

Threads are scheduled on the NUMA domains in the system:

$ export OMP_PLACES=numa_domains

$ export OMP_PLACES=“{0},{8},{16},{24}”

$ export OMP_PLACES={0}:4:8

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Map Threads onto Places

85

Use variable OMP_PROC_BIND to map threads onto places

The settings define the mapping of threads onto places

The following settings are supported:
true, false, primary, close, or spread

The definitions of close and spread are in terms of the place list

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

An Example Using Places and Binding

86

$ export OMP_PLACES=cores

$ export OMP_PROC_BIND=spread

And they should be placed on cores as far away from each other
as possible:

Threads are scheduled on the cores in the system:

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Remember This Example?

87

#pragma omp parallel for schedule(static)
for (int64_t i=0; i<n; i++)
 a[i] = 0;

= Data

= Thread

Four threads execute this loop

The data is spread out

Data placement depends on
where threads execute

Use Affinity Controls

$ export OMP_PLACES=numa_domains
$ export OMP_PROC_BIND=spread

Wishful Thinking

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

NUMA Diagnostics

88

It is very easy to make a mistake with the NUMA setup

Two very simple, but yet powerful features to assist:

Variable OMP_DISPLAY_ENV echoes the initial settings

Variable OMP_DISPLAY_AFFINITY prints information at run time

Highly recommended to use these diagnostic features!

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen89

A Performance Tuning Example

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Matrix Times Vector Multiplication: a = B*c

90

#pragma omp parallel for default(none) \
 shared(m,n,a,B,c) schedule(static)
for (int i=0; i<m; i++)
{
 double sum = 0.0;
 for (int j=0; j<n; j++)
 sum += B[i][j]*c[j];
 a[i] = sum;
}

= *

j

i

a B c

An embarrasingly parallel algorithm!
(on paper)

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Performance Using 64 Threads*

91

*) The machine characteristics will be disclosed shortly

Performance of the matrix-vector algorithm (4096x4096)

This is a highly parallel
algorithm, but adding threads

degrades the performance!

Pe
rf

or
m

an
ce

 in
 G

fl
op

/s

0

1

2

3

4

5

6

Number of OpenMP Threads

0 8 16 24 32 40 48 56 64

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Automatic NUMA Balancing in Linux

92

“Automatic NUMA balancing moves tasks (which can be threads or processes) closer to
the memory they are accessing. It also moves application data to memory closer to the
tasks that reference it. This is all done automatically by the kernel when automatic NUMA
balancing is active.”

“Virtualization Tuning and Optimization Guide”, Section 9.2, Red Hat documentation

echo 1 > /proc/sys/kernel/numa_balancing enable

echo 0 > /proc/sys/kernel/numa_balancing disable

This is an interesting feature available in Linux

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Performance Using 64 Threads*

93

Performance of the matrix-vector algorithm (4096x4096)

NUMA balancing gives a 1.6x
improvement, but the

performance is still
rather poor

Pe
rf

or
m

an
ce

 in
 G

fl
op

/s

0

1

2

3

5

6

7

8

9

Number of OpenMP Threads

0 8 16 24 32 40 48 56 64

Without NUMA Balancing With NUMA Balancing

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen94

Let’s Check The System
We Are Using!

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The NUMA Information for the System

95

$ lscpu
 ……
NUMA node0 CPU(s): 0-7 , 64-71
NUMA node1 CPU(s): 8-15 , 72-79
NUMA node2 CPU(s): 16-23, 80-87
NUMA node3 CPU(s): 24-31, 88-95
NUMA node4 CPU(s): 32-39, 96-103
NUMA node5 CPU(s): 40-47,104-111
NUMA node6 CPU(s): 48-55,112-119
NUMA node7 CPU(s): 56-63,120-127
 ……
$

node distances:
node 0 1 2 3 4 5 6 7
 0: 10 16 16 16 32 32 32 32
 1: 16 10 16 16 32 32 32 32
 2: 16 16 10 16 32 32 32 32
 3: 16 16 16 10 32 32 32 32
 4: 32 32 32 32 10 16 16 16
 5: 32 32 32 32 16 10 16 16
 6: 32 32 32 32 16 16 10 16
 7: 32 32 32 32 16 16 16 10

8 NUMA Nodes

8 cores/node

2 columns => 2 hardware threads/core

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The NUMA Structure of the System*

96

Each NUMA node has 8 cores with 2 hardware threads each

Consists of 8 NUMA nodes according to “lscpu”

In total the system has 64 cores and 128 hardware threads

There are two levels of NUMA (“16” and “32”)

*) This is an AMD EPYC “Naples” 2 socket server (yes, I know, it is relatively old :-))

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Abstract System Topology (numactl -H)

97

Center
Node

Remote
Node

Remote
Node

Remote
Node

Remote
Node

Remote
Node

Remote
Node

Remote
Node

Even longer access time (“32”)

Longer access time (“16”)

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Example - NUMA Node 0 (lscpu output)

98

0 64 1 65 2 66 3 67 4 68 5 69 6 70 7 71

Memory

8 cores
16 hardware threads

All cores and hardware threads share the memory in the node

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

#pragma omp parallel for default(none) \
 shared(m,n,a,B,c) schedule(static)
for (int i=0; i<m; i++)
{
 double sum = 0.0;
 for (int j=0; j<n; j++)
 sum += B[i][j]*c[j];
 a[i] = sum;
}

Recall the Code Used Here (a = B*c)

99

= *

j

i

a B c

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Is There Anything Wrong Here?

100

Nothing wrong with this code

But this code is not NUMA aware

The data initialization is sequential

Therefore, all data ends up in the memory of a single node

Let’s look at a more NUMA friendly data initialization

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

The Original Data Initialization

101

 for (int64_t j=0; j<n; j++)
 c[j] = 1.0;

 for (int64_t i=0; i<m; i++) {
 a[i] = -1957;
 for (int64_t j=0; j<n; j++)
 B[i][j] = i;
 }

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

A NUMA Friendly Data Initialization

102

#pragma omp parallel
{
 #pragma omp for schedule(static)
 for (int64_t j=0; j<n; j++)
 c[j] = 1.0;
 #pragma omp for schedule(static)
 for (int64_t i=0; i<m; i++) {
 a[i] = -1957;
 for (int64_t j=0; j<n; j++)
 B[i][j] = i;
 }
} // End of parallel region

= *

j

i

a B c

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Control the Mapping of Threads

103

As an example, use the first hardware thread of the first two
cores of all the nodes

The Thread Placement Goal
Distribute the OpenMP threads evenly across the cores and

nodes

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Example - The Target Hardware Thread Numbers

104

0 1

N
od

e
0

16 17

N
od

e
2

8 9

N
ode 1

24 25

N
ode 3

48 49

N
od

e
6

32 33

N
od

e
4

40 41

N
ode 5

56 57

N
ode 7

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

An Example How to Use OpenMP Affinity

105

$ export OMP_PROC_BIND=close

$ export OMP_NUM_THREADS=16

$./a.out

NUMA node0 CPU(s): 0-7 , 64-71
NUMA node1 CPU(s): 8-15 , 72-79
NUMA node2 CPU(s): 16-23 , 80-87
NUMA node3 CPU(s): 24-31 , 88-95
NUMA node4 CPU(s): 32-39 , 96-103
NUMA node5 CPU(s): 40-47 , 104-111
NUMA node6 CPU(s): 48-55 , 112-119
NUMA node7 CPU(s): 56-63 , 120-127

Expands to the first hardware thread on the first 2 cores on each node:
{0}, {8}, {16}, {24}, {32}, {40}, {48}, {56}, {1},{9},{17},{25},{33},{41},{49},{57}

$ export OMP_PLACES={0}:8:8,{1}:8:8

Note: Setting OMP_DISPLAY_ENV=verbose is your friend here!

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Pe
rf

or
m

an
ce

 in
 G

fl
op

/s

0

20

40

60

80

100

120

140

160

180

Number of OpenMP Threads

0 8 16 24 32 40 48 56 64

First Touch not leveraged First Touch leveraged

The Performance for a 4096x4096 matrix

106

Threads No Leverage
First Touch

Leverage
First Touch

Benefit of First
Touch

1 5,1 5,1 1,0
56 8,0 113,3 14,2
64 8,0 175,4 21,9

Speed up 1,6 34,4

Performance in Gflop/s

Recall that the only difference is
in the initialization of the data

Much better scaling
(34x using 64 threads)

First Touch tuning improves the
performance by a factor of 22!

22x
faster

Oracle Linux with the gcc compiler
2 socket system (2 AMD EPYC 7551 with 64 cores)

NUMA balancing on; negative scaling for version without FT and balancing off

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Part II - Takeaways

107

Data and thread placement matter (a lot)

Important to leverage First Touch Data Placement

OpenMP has elegant, yet powerful, support for NUMA

The NUMA support in OpenMP continues to evolve and expand

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen

Wrapping Things Up

108

Follow the tuning guidelines given in this talk

Always use a profiling tool to guide the tuning efforts

Performance tuning is a frustrating and iterative process

In may cases, a performance “mystery” is explained by NUMA
effects, False Sharing, or both

Think Ahead

Copyright (©) 2024 by Ruud van der PasIt Is Okay To Be Lazy - PPCES 2024, March 11-15, RWTH Aachen109

Thank You And … Stay Tuned!

Ruud van der Pas

 OpenMP
Does Not Scale
Bad

