Introduction to Research Software Development With MATLAB

Clean Code and Fundamentals of Research Software Development with MATLAB
Hands-On Workshop
Dr. Thomas Kiinzel, MathWorks, 2024

Table of Contents

Y=Yy ol [[@ IU] (oTo] g 1 =T PSSR
(SF=Tod (o] o T0] alo IV od 11 o T] o] o V28U UUPPIN
KEY MESSAGES / ACHIVILIES. ceeiuiuii ittt et e e e e ettt e e e e e e e e e eee st e eaaaeeeesssaaa e aeaeeeeensssannns
(@70 0111153) 1P
AV o] 4 T o) o RS T=Tox 1 o] 1SRRI
Y= To o] N O N I N T oo - T
Section 1: Refactoring / ClEan COUE.......ouuuuu ettt e ettt e e e e e e ettt eeeeeaeeeeesbaanaaaeaaeeeeesnnns
7= o1 [o] o I 1= 1 T PSSR PR
AST=Tox1T0] TR TS To TH Ty o7 @7 o] o1) S USRRSPPPRPNS
Section 4: ReproducCible ENVIFONMENT..... ..o ettt e e e e e e e e et e e e e e e e e e ee s eeaas

Learning Outcomes
At the end of this workshop, you...

* Better understand how to write Clean Code and know modern MATLAB language and IDE features to
achieve it

» Learned about the concept of writing Tests for your code and implement them with MATLAB

» Understand how to use git for local Source Control of your MATLAB code and why it is important for
maintaining code quality

* Know why (and how!) to use git branches during development and how to merge

» Understand how to share and collaborate in a reproducible manner with MATLAB projects

You get a running start at pragmatic and collaborative development of maintainable research software with
MATLAB.

This workshop is not about knowing the correct code syntax or writing efficient MATLAB code!

If you want to become better at programming in MATLAB, consider these self-paced online courses:

-‘:\M.lth\\'orks Products Solutions Academis Support Community Events

Learn MATLAB and Simulink at your own
pace

« Complete hands-on exercises.

= Take entire courses or focus on specific topics.

Self-Paced Courses
Getting Storted (16) MATLAB
MATLAB Onramp

Get started quickly with the basics of MATLAB.

MATLAB Fundamentals

Leam core MATLAB functionality for data analysis, modeling, and programming.
Explore over 50 virtual and in-
person classroom courses

MATLAB for Data Processing and Visualization

Create custom visualizations and automate your data analysis tasks

MATLAB Programming Techniques

Improve the robustness, flexibility, and efficiency of your MATLAB code

Object-Oriented Programming Onramp

Learn the basics of using ebject-oriented programming in MATLAB te model real-world
objects and manage software complexity.

Self-Paced Online Courses

Background / Philosophy

| am proposing that most software development in research is prototyping, tinkering and incremental
improvements.

In order to do this in a safe, reproducible and scalable manner | propose following the...

https://matlabacademy.mathworks.com/

Incremental Research Software Development Cycle

Version x Version x+1

Refactoring: Small
code that improve
or efficiency but dc
behavior of the cc

Source Control: Committing code
changes to a source control system
concludes this incremental step. It
ensures that your work can be
undone and the development is
retraceable. This is your safety
net!

Also: Incrementall
without breaking
functionality

Tests: “Extra” project code that does not contribute to the function
but asserts that the behavior of all components of the code (and
maybe the whole program) is as expected. Passing the tests makes
unequivocally clear that your refactoring was successful

Key messages / activities

» "Refactoring" - make your code CLEAN

+ "Testing" - automatic confirmation that refactoring did not break functionality or that the new feature
works as intended

* "Source Control" - Make your work retracable, divide work into logical chunks (i.e. branches), collaborate
seamlessly with others

 "Reproducibility” - take care that the expected environment of the code (dependencies, variables, data,
folder structure etc.) can be rebuild easily

Conclusions

« Writing functionally working code is only the first step

» Research code is often “prototype” code that gets used maybe once... however you never know when it
may become critical for future you

» Code must be maintained through incremental changes

» A research software development project is not like building a house: Architect makes plan, builders
construct, customers live in it for years and only occasionally paint the walls

* A research software development project is more like gardening, it involves constant planting, observing
outcomes, formulating new plans, weeding, fighting bugs, replanting in new locations, etc.

» Writing code is human communication (with future-you or other developers), so aim to express your
intent clearly. Code that cannot be read or understood by you or other people is "write-only" code. This
code can in the future become useless at best, or even a severe liability that can bog down a whole
research project for weeks!

Almost everything in this workshop is meant as a suggestion and is up to debate! Pick what you need
for your project!

Modify and develop your own perspective!

Workshop Sections

The main parts of the workshop are stand-alone livescripts. First, let us make sure we are in the correct folder
and that all subfolders are added to the MATLAB search path:

if exist("MATLABGoodCodingPractice main.mlx", "file") && exist("sections", "dir")
addpath(genpath(fullfile(".","sections")));

else
error("Please go to the correct workshop folder!");

end

Run the sections to set up the next workshop section.

Section 0: MATLAB IDE Tools

edit MATLABGoodCodingPractice_tools.mlx

Section 1: Refactoring / Clean code

edit MATLABGoodCodingPractice_cleancode.mlx

Section 2: Testing

edit MATLABGoodCodingPractice testing.mlx

Section 3: Source Control

edit MATLABGoodCodingPractice sourcecontrol.mlx

Section 4: Reproducible Environment

edit MATLABGoodCodingPractice projects.mlx

Section 0: Development Tools

Before we start the workshop for real let us quickly talk about your toolkit for software development in MATLAB.

You can of course also develop MATLAB code in Jupyter Notebooks or in VS Code with the MATLAB
Extension, but MATLAB already comes with a great IDE that includes low-code Apps for productivity!

Table of Contents

Y N = B I o U Y=
N I I = I =Y o T8 o o 1= U

MATLAB IDE Features
Here are just a few examples of powerful Editor/IDE features of MATLAB:

See the Code Analyzer ("Linter") at work?

mean(A,) % note the squiggly line!

Auto renaming: Change the first instance of "A." to "B." and accept suggestion with Shift+Enter!

Multi-Edit: hold ALT Key and drag mouse to generate multiple cursors! Then move all cursors to the right and
add a semicolon to all lines at once!

OO

Create UserStruct

A.firstName = 'Hans'
A.lastName = 'Imglick’
A.age = 42

A.height = 179

A.ID = 124738

Multi-line commands (...) make code more readable and better for source-control. Try it, and make line 9 (the
randn statement) into a multi-line command by adding ... after the comma and pressing RETURN

Automatic "restyling" of the code with smart-indent (icon or CTRL+I). Select lines 8-18 and press CTRL+I.

for idx = 1:10

k{idx} = randn(1,10);
disp(idx);

end

time = linspace(9, 1.0,200;

y = sin(2 .* pi .* 10 .* time)

https://www.mathworks.com/products/reference-architectures/jupyter.html
https://github.com/mathworks/MATLAB-extension-for-vscode
https://github.com/mathworks/MATLAB-extension-for-vscode

plot(time, vy,
'LineStyle','-', ...
"Color','r',...
"Marker', 'square’, ...
'MarkerFaceColor', 'w");

Automatic refactoring into functions, for example the body of for loops
Convert to Function from the Live-Editor Tab.

x = linspace(-10,10,21);

for idx = 1:length(x)

y(idx) = 10/x(idx);
end

MATLAB Debugger

The first call to the function "debugme.m" works...
y = debugme(150);

But the other call produces an error...

y = debugme(85);

Let us pretend this is a complicated case and look into the function:
edit debugme.m
Use left-click on line-numbers to set breakpoints...

1. function y = debugme(N)

X = randn(1,N);

X(x<0) = 0;

1 for 1idx = 1:N
randomPick = randi(100,1);
y(idx) = x(randomPick);

- end

© wlulo o s wn

. Select line 21 and choose Refactor ->

%debugme - a function that produces errors

...that halt the execution of the function at a specific line. This allows you to inspect the "internal state" of the

function.

Breakpoints can be "conditional" as well, just try a right-click on a line number...

]

function y = debugme(N)
%debugme - a function that produces errors

X = randn(1,N);

X(x<0) = 0;

? for 1dx = 1:N

Set reskpone randomPick = randi(100,1);

‘i:m:§fm"y(idx) = x(randomPick) ;

' Show Code Folding Margin
7 L]

— —

o0 b WN K

... and enter a MATLAB expression that has to be "true" to halt the execution at that line.

Other useful conditional breakpoints can be set through the "Run" menu in the Editor-Tab:

EDITOR PUBLISH VIEW
& £ % & | - b E{ Section Break G
E;?—l - Profiler = [) @>

=) i) < Refactor el [k [& Analyze Run B Run and Advance Run Step Stop
u Bookmark ¥ v - Section @ Run to End A

NAVIGATE CODE ANALYZE SECTION
uctionToRSDwithMATLAB »

Run: debugme

(G P Editor - CAMATLAB\Introduction TR R R R T _

Git | MATLABGoodCodingPractice_md me I+ |
- Run and Time

.m
s
l El fu n C Ll)) Run code and profile to improve performance N)

BREAKPOINTS

0/
- /Odeb % =| Clear All that pro
| EJ Clear all breakpoints in all files
Set/Clear F12
- &] Set or clear breakpoint on current line
X

Enable/Disable

X (X < &] Enable or disable breakpoint on current line
fo r- Set Condition

B
“_-J Set or modify conditional breakpoint

{1}
L

ERROR HANDLING

Pause on Errors

.
J

s .

Pauses execution when an error occurs P 1C k) P

L e n d Pause on Warnings

Pauses execution when a warning occurs

e
O N UL~ WN

C @& & @ @

Pause on NaN or Inf

Pauses execution when a NaN or Inf value is returned

As bug-fixing can often be detective work, these tools give you a lot of options to solve your case!

Workshop Section 1: Refactoring and Clean-Code

Table of Contents

VAT = LR ST O == T T O o Yo [
[[NV (o W I) (S @1 [=T=T o T O Yo [TP

Avoid Comments! (yes, | am serious!) [at least a little bit!]........coovveeeeri i,
Exercise 1: Refactor a typical MATLAB SCrPL....ccoi oot

What is Clean Code?

There are many definitions of clean code, | prefer these:

Clean code is easy to read, easy to understand and easy to change!

In other words:

Clean code is maintainable, modifiable, extendable!

...................... 12

......................... 1
......................... 2

Clean code is not (exclusively) about coding style. Following the agreed style of the language you use (like
Python PEPS8 style-guide) or the “scene”/group you work in is clearly recommended. However: this does not
ensure any of the points above! MathWorks does not offer an official style-guide for MATLAB.

Again, please note: you can find many books, articles and opinions about Clean Code and good coding
practices. This workshop is just a suggestion. Take from it what you can use, drop the rest!

How do | write Clean Code?

[

=

Some people say you should "Write code as if the next person to read it is a violent psychopath who
knows where you live."

Good advice, good advice... But let us get a bit more specific.

Name Things Sensibly!

* Don’t overthink it!
* Use words that convey your intention

% unclear intention
idx

iii

k

s . .
% clear intention
index

counter

* Avoid very generic names, avoid lab-jargon, avoid cute jokes

myfunc
foo
dv

* Functions often use verbs or actions as names that tell you what it does

parseUserInput

classifyImage
saveData

* Variables get adjectives or nouns that tell you about the contained data

isValidUser
hasConnection

userName
voltageTrace

* Too long and too short is not good

% Which variable name has the correct lenght?
uN

usrN

userName

userNameWebInputNotSanitized

» Suggestion: functions and variables start lower-case and use camel case/mixed-case to separate words,
classes start uppercase

variableName
functionName

ClassName
DRY - Don't Repeat Yourself!
Look at this (very typical) MATLAB code:

[x,y] = receiveData();% x ranges © - 2*pi in 32 steps, contains 3x data
highresx = linspace(0,2*pi,256);

pl = polyfit(x{1},y{1},9);
fityl = polyval(pl, highresx);

p2 = polyfit(x{2},y{2},9);
fity2 = polyval(p2, highresx);

p3 = polyfit(x{3},y{3},9);
fity3 = polyval(p3, highresx);

What if you want to change the polynomial order of the fit? You have to make three changes (what if you forget
one?). Also, what if your new data contains 4 or only 2 measurements?

Now look at the refactored version:

for n = 1:1length(x)
[p{n}, fity{n}] = performFit(x{n}, y{n}, highresx);
end

function [p, fity] = performFit(x, y, highresx)
p = polyfit(x, y, 9);

fity = polyval(p, highresx);

end

Same lines of code, but more versatile ("length(x)") and more modifiable (only one place to change the
polynomial order).

Avoid Mixed Levels of Abstraction!

The following code (from a real project of mine) is really hard to read! | propose that this is mainly because
low-level and high-level operations are intermixed.

prompt = {"Name:","Experiment-Nr:"};
dlgtitle = "Request data";
dims = [1 35];
answer = inputdlg(prompt,dlgtitle,dims);
userList = load("userList.mat");
if ismember(lower(answer{1l}),userList)
experiments = requestExperiments(answer{1});
if ismember(str2double(answer{2}), experiments)
data = requestData(lower(answer{l}), str2double(answer{2})); %#ok<NASGU>
else
error("DataProvider:BadExpID","Invalid Experiment-ID");
end
else
error("DataProvider:BadUser", "Unknown Experimenter");
end

The refactored version is a lot easier to understand. This is because the main program now only has "high-
level" operations with good names which make very clear what the program does

[rawName, rawID] = getUserQuery();
userName = validateName(rawName);
expID = validateID(userName, rawID);
data = requestData(userName, expID);

Of course | had to create three function for that:

function [name, expID] = getUserQuery()
prompt = {"Name: ", "Experiment-Nr.: "};
dlgtitle = "Request data";

dims = [1 35];

answer = inputdlg(prompt, dlgtitle, dims);
name = lower(answer{1l});

expID = str2double(answer{2});

end

function userName = validateName(userName)

userList = load("userList.mat");

errorMsg "Unknown Username";

assert(ismember(userName, userlList), errorMsg); %guard statement instead of nested
if-else...

end

function expID = validateID(userName, expID)

experiments = requestExperiments(userName);

errorMsg = "Unknown Experiment-ID";

assert(ismember(expID, experiments), errorMsg); %guard statement instead of nested
if-else...

end

Use Abstract Representations When Available!

As we just learned hiding the "nitty gritty" details behind function calls can make a program very readable.
Similarly, high-level constructs like specialized data-types and containers can make very readable code.
High-Level Data-Types and Containers

Of course you can represent all your data in low-level types like arrays of double and char. But this make you
write (and read!) a lot of extra code on different levels of abstractions. MATLAB offers a lot of specialized data
types with dedicated methods.

v

double, logical
single,

clhl |str

char string

Another good example are datastores or tall-arrays - they are needed to work with data that exceeds local
memory, but they also allow you to do technically complex things in a few lines of very clean code!

Object-Oriented Programming

Heterogeneous

+

{}

structure

Non-numeric, Key-value,
ordered non-ordered

O
Q@O

cell

categorical

table timetable

O
QO

dictionary

What if the MATLAB datatypes are not abstract enough to express your intent?

L

Many spec

Let us say, your unit of processing is the “Experimental-Session” (which is a combination of images, time-series

and metadata). All operations in your code deal with processing those “conceptually related” data.

Consider defining a Class (“ExperimentalSession”) that encapsulates data (“Properties”) and custom operations

(“Methods”)! This makes VERY readable code because of great separation of the abstraction levels but is
considered relatively advanced programming.

https://www.mathworks.com/help/matlab/datastore.html
https://www.mathworks.com/help/matlab/tall-arrays.html

classdef Rectangle
properties
X (1,1) double {mustBeReal} e
Y (1,1) double {mustBeReal} = ©
Width (1,1) double {mustBeReal} = ©
Height (1,1) double {mustBeReal} = ©

end

methods
function R = enlarge(R,Xx,y)
arguments (Input)
R (1,1) Rectangle
x (1,1) {mustBeNonnegative}
y (1,1) {mustBeNonnegative}
end
arguments (Output)
R (1,1) Rectangle
end
R.Width = R.Width + x;
R.Height = R.Height + y;
end
end
end

Note: the code is not runnable because defining a class in a script is not allowed.

The actual code to create and enlarge a rectangle is very clean now:

rectl = Rectangle;
rectl.enlarge(5,1)

Write good functions!

A large part of what we talked about so far leads to the following conclusion: structure your code in well written
functions!

Functions in MATLAB are superior to scripts in many ways. A good function "does one thing". Thus, good
functions are automatically short and concise. If you find yourself scrolling up and down in a very complicated
and long function - maybe it can be refactored into smaller functions that do more specific tasks?

Another useful rule of thumb is: A good function should have "as few inputs as possible". If your function
has dozens of input parameters, maybe it is time to refactor it?

Functions have their own protected variable workspace (scope)! This is good, as you can (re-)use clear
variable names without the fear of overwriting other data. However, this makes you work a bit more during
coding, as you have to consider which variables are available inside the function and which are not.

My opinion (we can argue!): use live-scripts [*.mlx] for workflow examples and functions [in separate *.m files]
for all operational code

Anatomy of MATLAB Functions

function [outputl, output2] = myFunction(inputl, input2) myFunction.m
%MYTEST Summary of this function goes here
% Detailed explanation goes here

result = dinputl + input2;

result2 = myNestedFunction;

result3 = mylLocalFunction(result);
function outputN = myNestedFunction() Nested Function
outputN = result + 10; + Can access the workspace of the cont:
end function!
» Cannot be called from outside myFunc
end |]

function outputlL = mylLocalFunction(inputL) | | Local Function
outputl = inputlL + 10; + Cannot access the workspace of the

end containing function!

« Cannot be called from outside myFunc

If you forget how to write a function, MATLAB will help you with this: you can create a correctly styled, empty
"New" Function with the GUI

4\ MATLAB R2023b

HC PLOTS
ﬁ_}j E @ |lz) Compare
Open Save - [
v ¥ |& Export ¥
b Script Ctrl+NF—
Lo MATI

Live Script

X

New
=]
S
fx
L]
=

Function
Live Function

Class

g
rodCo
n.m

=

Test Class

System Object >

...automatically refactor code into functions

LIVE EDITOR

A3 Normal ¥ : ‘@ Refadcr" [;r-l E{ Section Break [) @9
Find ¥ Text B I E M Code Control Task Convert to Function { Run and Advance Run S S
Bookmark ¥ = i= ‘_‘ = = e ¥ | Convert to Local Function Run to End
IGATE TEXT CODE SECTION RUN

or export functionality from Apps and LiveTasks into auto-generated functions!

<\ Curve Fitter (=] X

CURVE FITTER

1, 3 Open 1 - Update Fit &y Residuals Plot S
e & sme 2 [exclusion Rules B D &
New Select [53] Validation Data Gaussian Power Rational | Sum of Sine © ~ |-
~ & Duplicate | Data O Manual Prediction Bounds [None ~ | |~
FILE DATA FIT TYPE .
- D Export to Figure
fitsin X # Export plot(s) of the currently selected fit to figure
Fit Plot ~, Generate Code
4F I I, I I) I =% Generate MATLAB code for the currently selected fit at*sin(b1"x+c1)
Export to Works u M
/> Export to Workspace
3F ¥ e 0
xport currently selected fit to the workspace
2| >ﬁ Create Simulink Lookup Table NER oSS
Create a Simulink Lookup Table block from the selected fit @)
v
1 g p 4
Algorithm [Trust-Region v
X or 1 DiffMinChange 1e8
o < >
ok i ~ Results
Fit Name: fitsin
3k 1
Sum of Sine Curve Fit (sin1)
1(x) = a*sin(b1*x+c1)
4 . i
: . = : . - - : - - . and 95% C Bounds
0 1 2 3 4 5 6 7 8 9 10
t Value Lower Upper
a1 1.2034 1.1153 1.2916
Table of Fits b1 9.4560 9.4309 9.4812
iFitState |iFitname |iiData |HFittype iiR-square |}iSSE i DFE #AdjRsq |HRMSE |i#Coeff iiValidation Data < -0.0239 0.1695 0.1216
o Fit Sine xxvs.t sint 0.0010852 |8.0934 997 -0.00091868 |0.090099 |3
of Fit
(/] fitsin XX vs. t sin1 0.41717 1001.1 997 0416 1.002 3
T e |
» <‘ »
p4 ¥

% (...)
[xData, yData] = prepareCurveData(t, xx);

% Set up fittype and options.
ft = fittype('sinl');
opts = fitoptions('Method', 'NonlinearlLeastSquares');

opts.Display = 'Off"';

opts.Lower = [-Inf © -Inf];

opts.StartPoint = [1.19675885778667 9.42477796076938 0.12581876820584];

% Fit model to data.
[fitresult, gof] = fit(xData, yData, ft, opts);

Function Call Precedence

How does MATLAB know that you want to call a custom function you wrote? When MATLAB encounters a word
in program code it will stick to the following order when trying to figure out what you are referring to:

1: Look for a variable called penguin in the current workspace

2: Look for a script or function called penguin

2.1: Is it a nested or local function in the current file?

2.2: Is it a file of that name in the current folder or subfolders of the current folder?

2.3: Is afile of that name anywhere on the MATLAB search path?

penguin

1.

2

A. Local function
B. File in current folder
C. File on path

Structuring your code as good functions with good names will make your code project more accessible. Putting

functions in subfolders, possibly with special names, will support this:

10

= test
= +packageName
) packageFunction.m
= private
privateFunction.m
= subfolder
&) myFunction2.m
) myFunction.m
If the folder test (and subfolders) are on path...
* myFunction and myFunction2 can be called from anywhere
* privateFunction can only be called if test is the current folder of the

calling “agent”
« packageFunction must be called by packageName.packageFunction

Input Argument Validation

The use of function argument validation is optional in function definitions. But argument validation is very useful
in functions that can be called by any code and where validity of the arguments must be determined before
executing the function code.

Argument validation also allows definition of default values

Functions that are designed for use by others can benefit from the appropriate level of restriction on arguments
and the opportunity to return specific error messages based on the argument validation checks.

function myFunction(inputArg)
c‘!i_g\lnﬁeﬂts

inputArg (dim1,dim2,...) ClassName ifenl,fcn2,..., = defaul tValue

end Size Class Functions

% Function code

Check out the Documentation on the arguments block!

Handle Errors and Write Robust Code!

* Fail early: validate inputs or intermediate results as soon as possible

» Use assert statements to guard your program (instead of the horror of nested if-else statements)

* Fail gracefully: throw human-readable error messages and make sure to leave the machine in a
reasonable state

+ Consider try/catch blocks to handle “non-breaking” errors or clean-up upon error

11

https://www.mathworks.com/help/matlab/matlab_prog/function-argument-validation-1.html

try
filehandles = unrealiableInput();%generates many files
analysis = analyzeData(filehandles);%this might fail
catch
%delete temporary files
%generate meaningful message to user
end

Robust Code makes as little assumptions as possible

* Avoid hardcoded path names (mind the file-separators and different home folder etc)! Functions like
filesep, userpath or fullfille can be helpful to write OS-agnostic and thus robust code

imread("/home/user/thomas/Documents/MATLAB/myimages/urlaubsfoto.jpg") % only works

on linux!

imread("C:\Users\tkuenzel\Documents\MATLAB\myimages\urlaubsfoto.jpg") % only works

on windows!

imread(fullfile(userpath, "myimages","urlaubsfoto.jpg")) % works on all 0S

» Check we run in the correct folder, check if output folders exist

if ~exist("output", "dir")
mkdir("output")
end

» Check for existence of files (even the ones your program just created)

assert(exist("myOutput.mat"”,"file"), "Output-file does not exist!")

» Use dynamic output file names (otherwise results will be overwritten)

tempdir % returns the folder used for "temporary" files (0S-specific!)
fileName = fullfile(tempname) % returns a unique, random filename

* If you change directories, move the user back where we started in the end

oldDir = cd(newDir);
% ...

% Some work is done
%

cd(oldDir);

Avoid Comments! (yes, | am serious!) [at least a little bit!]

» Comments must be maintained alongside the code: twice the work and can be difficult

« Comments can do more harm than good if not maintained

12

 Comments are not a source control system

function output = complicatedAnalysis(input)
%COMPLICATEDANALYSIS Perform the complicated analvsis on data

% The complicated analysis follows Mustermann et al., 2023,

% Journal of complicated algorithms 34:1-322

inputpl = input + 1; % add one to dnput
% inputpl = doStuff(inputpl);%DOES NOT WORK

% now we fit a gaussian to the datd
polynomial = polyfit(inputpl){% fit a polynomiall

compDat = veryAbstractFun() j% watch out, this pulls data from database

My advice: avoid comments as much as possible, MATLAB code is already the most concise way to
express your intent!

Exercise 1: Refactor a typical MATLAB Script

Take a look at this typical MATLAB script:
edit plotscript.m

Can you refactor it into a function, making it more versatile and expandable by applying the Clean Code
principles we discussed above?

Consider to make the timetable T an input to the function! Can you make sure the user provides the correct
input?

(Hint: if you need inspiration you can look into the "plotfunction.m" file... this is what | thought could be a
refactored version of the script)

13

Workshop Section 2: Testing

What is Testing?

» Testing or “Unit Testing” uses code that calls your operational program units (most often functions) in
various ways and checks whether the behavior is as expected

* Testing frameworks are used to automate running this code

* “Passing the unit tests” as a requirement for code to be committed to source control helps write maybe
more bug-free code

* Unit tests are the first users of the code and show the expected behavior of your program. If unit tests
exist in a project, try studying them!

Do | really need so much extra code for my small research software project?

 For analysis tools | felt at least an “completion test” (running e.g. an example dataset that creates a
known result x) to be necessary
» Be pragmatic, the amount of overhead work should match the size and scope of the project

Next time: aim to write ONE test for your next function

MATLAB Test

MATLAB now has a Test Toolbox called "MATLAB Test". MATLAB Test provides tools for developing, executing,
measuring, and managing dynamic tests of MATLAB code, including deployed applications and user-authored
toolboxes. It helps you go to scale with your projects and test suites. This is however out of scope for this

workshop.

Testing & CI/CD (beyond our scope today!)

In larger project or production settings testing is often deeply integrated in the workflow. This allows agile
development AND production and deployment of high-quality code artifacts. These workflows are often
described under the term "continuous integration" and "continuous deployment". Here tests ("verify") are
automatically performed when it is submitted to a version control system.

https://www.mathworks.com/products/matlab-test.html

AO“WU" Arfifacts, and p
o @po%

c* Ve ot v,
\!‘G} .‘P‘kf’ Cl-P' e'P/,‘}
Nl
=] >
£ 2 g -
o m = Z
] m 5 S
= Q = 5
Test Authors Control
Q_ Monitor A

MATLAB and Simulink offer a wide range of capabilities and integrations for leading CI/CD systems. If this
sounds like something your team must use, please refer to the documentation on Cl or contact us! As
fascinating as this is, this topic is out of scope for this workshop as well.

MATLAB Unit Testing Framework
How do you write test code? In principle you could create your own functions and scripts as tests and run them
as needed. But you will soon notice it is more convenient to use the MATLAB Testing Framework.

Unit tests can be script-based, function-based and class-based - versatility but also complexity increases from
left to right.

Here we will aim for the middle-ground and discuss function-based unit-testing

Start »| Loop over all test functions

» Teardown file fixtures

Setup fresh fixtures

Create test array

End

Y

Setup file fixtures

Teardown fresh fixtures

To understand this better we follow a small documentation example. Let "quadraticSolver.m" be the function we

develop...

edit quadraticSolver.m

Lets quickly visualize what it does:

linspace(-3,3,600);
_1;

X
a

https://www.mathworks.com/solutions/continuous-integration.html
https://www.mathworks.com/help/matlab/matlab_prog/ways-to-write-unit-tests.html
https://www.mathworks.com/help/matlab/matlab_prog/write-script-based-unit-tests.html
https://www.mathworks.com/help/matlab/matlab_prog/write-function-based-unit-tests.html
https://www.mathworks.com/help/matlab/matlab_prog/author-class-based-unit-tests-in-matlab.html

b = -2;

C = 2;

y = a.*X."2 + b.*X + c;
plot(x,y);

zc = quadraticSolver(a, b, c);
hold on

plot(zc,[0 0],"rx");

Makes sense, right?

Now let us take a look at the corresponding test function. Test functions must have the same name as the
function under test plus the keyword "test" at the beginning or end of the name. Thus our test function for
quadraticSolver.m is called quadraticSolverTest.m:

edit quadraticSolverTest.m

You run the suite of tests for your function from the commmand line (or code) with
results = runtests("quadraticSolverTest.m")

We see all the test succeeded. The result struct contains valuable diagnostic information, which is probably
useful when a test fails unexpectedly!

Please also note how the "fixture" functions were executed: the setupOnce and teardownOnce were run at
the beginning and end of the suite, the setup and teardown were run repeatedly at the beginning and end
of each test in the suite. This allows you to create the appropriate environment for your functions under test so
they can actually run or tidy-up generated files, figures etc. after a function ran.

The function-based tests in MATLAB are an ideal compromise of versatility and ease of use! They are sufficient
for almost all use-cases.

Test-Driven Development

Some developers practice test driven development: they write the test first and then implement the feature to
pass the test!

Let us explore this philosophy and add a feature to our function with test-driven development: The function
quadraticSolver.m could also tell us whether the solution it found was real or imaginary. Thus we could demand
a second output argument which is a boolean which is true if the quadratic function has a real solution. Easy
right?

We'll add a new test to the suite first, i.e. uncomment lines 19-22 in quadraticSolverTest.m!

%function testBooleanOutput(testCase)

%[actSolution, hasRealSolution] = quadraticSolver(1,2,10);
%assert(hasRealSolution);

%end

We run the test suite and see - quite expectedly - one test fails with errors!
results = runtests("quadraticSolverTest.m")

Of course it fails, since we haven't even implemented the new feature yet. However, this helps us structure our
work. We can go home and come back next week. When we run the test suite we immediately remember what
the next steps were. Or someone else can run the test suite and see the missing feature and implement it?

Let us add the feature now change line 1 to this code (without the % of course):
%function [roots, hasRealSolution] = quadraticSolver(a,b,c)
and add this code to line 13 (uncommented):

%hasRealSolution = isreal(roots);

When we now run the test suite...
results = runtests("quadraticSolverTest.m")

... it passes. We successfully implemented a new feature with Test-Driven Development! This code is ready for
committing to source control... but that is the next section of the workshop!

Exercise 2: Write a Unit Test

Now it is your turn! Complete the plotfunctionTest.m by implementing a unit test for the plotfunction.m
(remember, this was my suggested solution of the refactoring exercise). Think about adding some cleanup

code to the teardown fixture, otherwise you'll clutter your desktop with figure windows each time you run the test
suite.

All hints should be in the file. If you really get stuck take a look at "solution _plotfunctionTest.m".

edit plotfunctionTest.m

Workshop Section 3: Source-Control & git Integration

Table of Contents

What is git and NOW dOES It WOTK? ... ittt e e e e e e e e e e s e e e e e e e e e e ennnreeeeeeeseanns 1
BaSIC GIt WOTKFIIOW. ..ot e e e e e e e e e e e e r et e e e e e e s e anrneeeeeeeeeeaannnneeeeaeas 2
=Tz Lol o =T F PSP PP TR PPTPPPPP 2

Using git in the MATLAB IDE

.. 3
SYSTEIM CAlIS...ceiiiiiiie ettt et e e et r ettt e e e e e e s ae e et e e e e e e e e s abae et e e eeee e e e e nnbeeeeeeeeeea e nnnrnneeeaeeeann 3
New programmatic git COMMANGS..........uiiiiiiiiii e e e e e e s e e e e e e e e e e s anrne e e e e e e e e e aannneees 4
Git IDE Integration (ClassiCal DESKIOP). ... uuuutii ittt e e e e e e e e e e e e e e e e ennneeeeas 5
Git IDE Integration (new Desktop and MATLAB ONlINE)....ccuiiiiiiiiiiiiiieie et a e 8

An extended git exercise/code-along With DranChing.........ooouueiiiiiii e 11

What is git and how does it work?

* Git is a distributed version control system, a software that records changes in files over time and allows
recall of specific versions

+ “Distributed” means every client has the complete history (not just the latest state), so many identical
copies of the project might exist. There can be a remote repository (with lots of tools to synchronize local
states to the remote states) but it is not required. Often git it is used locally only.

* Git is focused on saving the complete state of the project (“snapshot”) at a given time, not only the
differences (in a smart way, however, to save space and processing time)

+ Git calculates a cryptographic checksum from every snapshot and uses that to verify and reference the
state

-
-
[
[]
[
[
[
[
L]
*
-
[
[
[
[
[]
[
L]
*
-
[
[
[
[
[]
[
L]

snapshot

-

Time

Basic git workflow

Workflows for git are usually with remote repositories and collaboration in mind. It is however perfectly fine (and
actually often desirable) to only work with a local repository.

Checkout Pull/Fetch

B

Local

Working

F Y

L 3

Repository

Folder

Commit Push

Branches

* Branches are encouraged in git! Use branches of your project for logically separate aspects of your work,
testing, alternate ideas, etc. especially when working in a collaborative project!

* A repository has at least one branch: the current commit and its series of parent commits (most often
called “master” or “main” branch)

« Commits can have multiple “children” (a branching point) and multiple “parents” (a merge point)

* git maintains a pointer called HEAD which identifies the currently active commit.

master

98ca9 e E— 34ac2 e E— f30ab e E— 87ab2

image from Git - Branches auf einen Blick (git-scm.com)

Using git in the MATLAB IDE

MATLAB ships a built-in version of git, so in principle you do not have to install anything.

There is several ways to interact with git from within MATLAB. You should experiment and use the approach
that makes you most productive!

System Calls

This works well when you have git installed and configured system-wide. This is advisable anyway, so maybe
this is for you:

error("do not run this section as whole please"); % this code-section should not be
run

% create a new repository in current folder
lgit init

% clone a remote repository in current folder
lgit clone <remoterepository.git> <local folder name>

% merge remote changes into your local repository
lgit pull

% stage changed <file>
lgit add <file>
lgit add .

% commit (with message) / -a flag skips the staging (= add .)
lgit commit -m "Message”
lgit commit -a -m "Message”

% shows state of current directory
lgit status

https://git-scm.com/book/de/v2/Git-Branching-Branches-auf-einen-Blick

% shows timeline of commits
lgit log

% push local changes to remote repository
lgit push

% creates a new branch at the current commit state
lgit branch <name>

% points HEAD to the branch <name> (the working directory will be set-up in the
appropriate state).

% All following commits will extend the series of this branch

lgit checkout <name>

%integrates the changes in <branch> into the branch that the current HEAD points to
[conflicts could arise!]
lgit merge <branch>

New programmatic git commands

In R2023b new programmatic tools to interact with git were introduced. These can be in code (think about
CI/CD or other complex workflows) or entered into the Command Window

error("do not run this section as whole please"); % this code-section should not be
run

% create a new repository in current folder
repo = gitinit

% clone a remote repository in current folder
repo = gitclone(URL)

%get repo-object for existing repository
repo = gitrepo

% merge remote changes into your local repository
pull(repo)

% stage changed <file>
add(repo,filename)

% commit (with message) / -a flag skips the staging (= add .)
commitDetails = commit(repo,Message=commitMessage)

% shows state of current directory
statusDetails = status(repo)

% shows timeline of commits
commitHistory = log(repo)

% push local changes to remote repository
push(repo)

% creates a new branch at the current commit state
branchDetails = createBranch(repo,name)

% points HEAD to the branch <name> (the working directory will be set-up in the
appropriate state).

% All following commits will extend the series of this branch

branchDetails = switchBranch(repo,name)

%integrates the changes in <branch> into the branch that the current HEAD points to
[conflicts could arise!]
merge(repo,commitIdentifier) % commmitIdentifier can be branch, commit, or tag

Git IDE Integration (classical Desktop)
You can also interact with git in a graphical manner in the IDE. Here | am showing Screenshots from MATLAB
classical Desktop.

Your main interaction principle is to right-click in the Current Folder tab. You can then interact with git in many
ways with the commands under the "Source Control" menupoint:

&P ol

Current Folder

b C. ¥ MATLAB » IntroductionToRSDwithMATLAB »

Name = Git
git
preparation
= sections u
= (0 Tod Open
']_Ref Show in Explorer
2 Tes View Class Diagram
=] 3 Sou Create Zip File
data Rename F2
Delete Delete
f,‘(.
& imp New >
£ MAT Compare Selected Files/Folders
) repe Compare Against >
4 ReF Source Control > Manage Files...

E View Detail
Hdebur cut Ctrl+X ew etals
. c Ol C Ei; View and Commit Changes...

o T
o .gltattr ; Py . ¢ Fetch
. . aste V| |
® gitign Y Push
E_I MATLA Remove from Path @ Pull
- v Indicate Files Not on Path [Remote
=]
READN U Branches
Refresh F5
E% Submodules
@ Stashes
@ Refresh Git Status
Revert Local Change
Extract Cor Markers to File
Rename...
Move...

Note the markers next to the files in the Current Folder tab:

=" 3 _SourceControl =
data
" importECG.m
£ MATLABGoodCodingPractice_s...
) newfun1.m
) newfun2.m
) repairECG.m
4_ReproducibleEnv
% debugme.m o

® O O m e

Here we have unstaged files (white), files that are in the repository with changes (blue) and without changes.

If you want to add one of the unstaged files to future commits: right-click - Source Control - Add to git

=" 3_SourceControl u
data
limportECG.m
MATLABGoodCodingPractice_s... ™
2 newfun1.m 0

5 Open
& rey Open as Live Function
4 R Show Details

= deb Suflir e ”
© .gitatl view Help A

o ‘g|t|g Show in Explorer
SJ MATL Create Zip File

I REAC Rename F2
Delete Delete
Compare Selected Files/Folders
Compare Against >
Source Control Manage Files...
- i View Details
uf tl
E{ View and Commit Changes...
Copy Ctrl+C Y
- v Fetch
Paste Ctrl+V
Y Push
v Indicate Files Not on Path @ Pull
= Remot
Check Code Generation Readiness % Bemohe
ranches
% Submodules
@ Stashes
& Refresh Git Status
Add to Git
Revert Local Changes
Extract Conflict Markers to File

Once it is staged (but not committed) the file gets a new marker:

& " 3_SourceControl N
data
& importECG.m
%/ MATLABGoodCodingPractice_s...
“ newfun1.m
) newfun2.m
2 repairECG.m

® + O m o

Under the "Source Control - Branches" Submenu you can find the graphical branch-manager App. Here you
can create, checkout and merge branches.

4\ Branches

Current Branch

Marme: DAC_diffusion_typo
HEAD: 932627d034ddf 7397 ccdatbh5d 607495 2 1fbef

Branch Browser

Branches: DAC_diffusion_typo

“3) Revert ta HEAD

e ¢‘J‘> Switch :\. Merge -

update CHARMED batch
small changes

Merge pull request #82 from neuropaly/jc
DOC: CHARMED: added reference to gMR|
DOC: CHARMED: added info about where,
DOC: CHARMED: small modif
DOC: Updated CHARMED doc
DOC: CHARMED: my two cents on sugges

—————— e

if\..____

Merge branch 'Testing-all-options' into Opti

v2.0.3 | Merge pull request #79 from neuropi'

-

no_messane

Authaor

ID: fd 090157 7hdMd0dddf 7344 echTh6cM b 1833
Muthor w0 o
Committer: ‘srgee Twee Hoeste-guly=e s
Date: 2017-10-158 22:42:21

Message:

= o gt 3 vlhy-e 11

change ‘command line exarmple’ in links to ghRusage and
hatch_example

=~ Differences from parent 30e340h%af18f041dk3d42845720¢
-3 Models

Branch and Tag Creation

L4 >

Specify a source by clicking in the Branch Browser. You can also enter a tag, branch or commit node,

Mew: @ Branch O Tag

Source: |fd00k1577hd Md0dddf 73441 eck b 62411833

MName:

Create

Help

Close

Git IDE Integration (new Desktop and MATLAB Online)

You can also interact with git in a graphical manner in the IDE. Here | am showing Screenshots from MATLAB

Online. This also applies to the new Desktop.

Your main interaction principle is to right-click in the Current Folder tab. You can then interact with git in many

ways with the commands under the "Source Control" menupoint:

<}3 [ﬁ ﬂ @ @ / > MATLABDrive > goodCodingPractice »

Name = Type ¥
B » 3 git Folder a
E. » [preparation Folder O

4 [sections Folder (]

» (3 0 Tools Folder (@)

4 [1_Refactoring Folder O

MATLABGoodCodinaPractice clsancode. mix L S o |
plotiy OPen Enter Function O
plots; Run F9 Script O
Ea testd| Run Script as Batch Job MAT-file (@)
» [0 2 Test Preview Folder O
4 [0 3_Sou Check Code Generation Readiness Folder]
» [data| copy Path Folder O
iMpo| oo F2 Function O
MAT P . trol.mix Live Script (@]
repai o Function O
Create Zip File
» [3J 4 Rep Folder O
debug cut ClrlX Function O
0O gitattrib| %Y CULC GITATTRIBUTE... @
() gitignor & Download GITIGNORE File @
MATLAE Compare To Live Script (C)
~ Workspace | Source Control v @ View Details...
i Name Indicate Files Not on Path Commit

Branch Manager
[Discard All Changes
¥ Fetch

4 Push

°

& Pull

fgy Stash Changes

& Stash List

@ Refresh

Remove from Source Control
Check File for Conflict Markers

Show Revisions

Note the markers next to the files in the Current Folder tab:

4 [3 SourceControl Folder O
» O data Folder O
importECG.m Function O
MATLABGoodCodingPractice_sourcecontrol.mix Live Script O
newfun1.m Function (o}
newfun2.m Function o
repairECG.m Function O

Here we have unstaged files (white), files that are in the repository with changes (blue) and without changes.

If you want to add one of the unstaged files to future commits: right-click - Source Control - Add in Source
Control

|#] importECG.m Function =
MATLABGoodCodingPractice sourcecontrol.mix Live Script (@]
newfuni1.m Function (@]
newfun2.m Function (G
repairECG.m Function O Open Enter
» (3 4 _ReproducibleEny Folder d Run Fo
debugme.m Function O
[gitattributes GITATTRIBUTE... [Open as Live Function
0 .gitignore GITIGNORE File O Preview
MATLABGoodCodingPractice_main.mlix Live Script { Check Code Generation Readiness
[] README.md MD File B Copy Path
Rename F2
- Workspace Delete Delete
i Name ii Value iiSize iiClass Create Zip File
Cut Citrl+X
Copy Ctrl+C
) Download
Compare To
Source Control » | @ View Details...
Indicate Files Not on Path Commit
Branch Manager
[§% Discard All Changes
Y Fetch
4 Push
& Pull
% Stash Changes
& Stash List
@ Refresh

Add to Source Control

Check File for Conflict Markers

Once it is staged (but not committed) the file gets a new marker:

4 [3_SourceControl Folder (]
» (3 data Folder O
importECG.m Function O
MATLABGoodCodingPractice sourcecontrol.mix Live Script @]
newfuni.m Function (0]
newfun2.m Function +
repairECG.m Function (]

The branch manager opens as a new graphical tab in MATLAB Online. The controls to create, checkout and
merge branches are moved into the GIT ribbon on top.

10

b
B e Q
livescriptversion v o e || G

Bl &

Commit Merge

8 %

Fetch Pull Push

Search (Clrl+Shift+Space)

Branch Tag
CURRENT BRANCH CREATE | FIND | cHANGES REMOTE
<& &3 & @ @ /> MATLABDrive > goodCodingPractice >
(@] - Fes i |=] goodCodingPractice.git
B | Name « Type % |~ Branches Commit Graph Branches/Tags Message Author Commit Date Com... | Author:
» D it (et livescriptversian [HERE) HEAD[livescriptversion][or adding GUI examples from MATLAB Online as well Thomas Kinzel <tkuenzel... 2023-12-08 13:42:07 2659¢91| pate:
E;o » O3 preparation Folder a main correction Thomas Kinzel <tkuenzel... 2023-12-08 13:40:17 LT —
4 [sections Folder @ | v Remotes small changes Thomas Kiinzel <tkuenzel... 2023-12-08 13:39:56 ossfosh|
. arents:
» 03 0_Tools Folder o ongin major changes to create livescript version of the workshop Thomas Kiinzel <tkuenzel... 2023-12-08 13:30:42 cO64afb
» (3 1_Refactoring Folder o HEAD [main][origin/main [origin/t added readme Dr. Thomas Kiinzel <tkue... 2023-09-0110:14:12 2253a5¢| Branches:
» [3 2_Testing Folder =] livescriptversion added slides and presenter notes Dr. Thomas Kiinzel <tkue... 2023-08-28 11:54:10 fafec71
4 [3_SourceControl Folder =] main renamed templates in template folder Dr. Thomas Kiinzel <tkue... 2023-03-07 09:57:51 dfdfoce |
= adding Gl e
» [data Folder] Tags adding csv files Dr. Thomas Kiinzel <tkue... 2023-03-06 14:14:59 5156045 _ pyiferences |
imporECG.m C—— = Submodules added low-code generated functions for import and processing Dr. Thomas Kiinzel <tkue... 2023-03-06 095505 636203 1 seat
) MATLABGoodCodingPractics, sourcecontrolmix Live Script o added testscript; plotfunction needed to output the handle Dr. Thomas Kiinzel <tkue... 2023-03-03 20:17:50 2867f2b 43
. — o Corrected error: local functions cannot be the same name as the... Dr. Thomas Kiinzel <tkue... 2023-03-03 14:36:43 1779722 .
) Corrected error: local functions cannot be the same name as the... Dr. Thomas Kiinzel <tkue... 2023-03-03 14:36:19 25bebbe
newfun2.m Function Ty
oEieen e = Renamed plotscript_suggestion to plotfunction Dr. Thomas Kiinzel <tkue... 2023-03-03 143521 dfsgesf
) Finalized suggestion Dr. Thomas Kiinzel <tkue... 2023-03-03 143415 eB4d5bC
» 3 4_ReproducibleEnv Folder o
Added spoilers folder and suggestion for refactored plotscript Dr. Thomas Kiinzel <tkue... 2023-03-03 14:32:57 cbbfo9
[A debugme.m Function o
0 = removed load (should be outside the script) Dr. Thomas Kiinzel <tiue... 2023-03-03 09:50:56 e12403f
itattributes GITATTRIBUTE..
g = added the unrefactored plotscript Dr. Thomas Kiinzel <tiue... 2023-03-03 09:48:42 ofécse3
D giignore CLICHORERS Create Workshop Repository Dr. Thomas Kiinzel <tkue... 2023-03-03 09:28:30 Tbbecdo
MATLABGoodCodingPractice_main.mix Live Script e}
) README.md MD File o

An extended git exercise/code-along with branching

We will now, building upon our plotfunction example from the refactoring and testing sections, develop an
exemplary git repository. Please follow along while | go through the exercise. And please interrupt me at any

moment | am unclear, fast or slow!!

Step 1.: Setup and initial commit of our repository

Step 1.1: create a new folder

Step 1.2: initialize an empty git repository in this folder

% make a new folder

% cd into the new folder
gitinit % or use the GUI

Step 1.3: copy plotfunction.m and plotfunctionTest.m and the data folder into the new folder

Step 1.4: add the files to Source Control

Step 1.5: make initial commit

11

COMMENT DATE
CREATED MAIN LOOP & TIMING CONTROL
ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE. CODE
HERE HAVE CODE.
ARAAAAAA
ADKFI5LKDFISOKLFT
MY HANDS ARE TYPING LJORDS
HARARAARAAANDS

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

https://xkcd.com/1296/

Next we want to create an import-function and a preprocess function to be able to load the csv-files in the data
folder and correct some artifacts in the data. We will either develop these from low-code tools or copy from the
workshop folder "3 _SourceControl" in case we are short on time. In any event, lets make several commits. so
we have something to work with.

&

Step 2.1: create or copy import function
Step 2.2: add import function to source control

Step 2.3: commit import function

Step 3.1: create or copy repair function
Step 3.2: add repair function to source control

Step 3.3: commit repair function

Step 4.1: call repair function in import function

Step 4.2: commit import function

We should now run the test(s) again and make sure everything works. Let us check the log:

repo = gitrepo;
log(repo)

12

Let us now create a branch called "feature" based on the last commit and demonstrate how
development can move on in different branches.

&

Step 5.1: Use the BranchManager (Right-Click --> Source Control --> Branches) to create a branch at the
current commit, call it "feature".

Step 5.2: in the "main" branch - make cosmetic change to plotfunction.m to demonstrate divergent development

Step 5.2b (optional): If you want to "experience" a merge conflict, change the title of the first subplot in line from
"All data" to something else, maybe "Complete Recording".

Step 5.3: commit changed plotfunction to main branch

Step 6.1: switch to "feature" branch

Step 6.2: note that the cosmetic changes to plotfunction are gone!
Step 6.3: develop or copy heartRateEstimator function

Step 6.4: add heartRateEstimator function to source control

Step 6.5: commit heartRateEstimator to "feature" branch

Step 7.1: call heartRateEstimator in the plotfunction and add result to figure by using the estimated heartrate in
the title of the first subplot

Step 7.2. commit modified plotfunction to "feature" branch

The project looks like this now:

13

4\ Branches X

Current Branch
Name: feature

HEAD: 2a1d9476bc458af6c92455eacAdcf3043d601518 55) Revert to HEAD

Branch Browser

Branches: All v| @ switch & Merge -
Author 1D:
2a1d9476bc458af6c92455eacddcf3043d
g 2\e] call heartRateEstimator in plotfunciThomas Kiin... |FNERES IRENNISTS|
+ created heartRateEsstimator Thomas Kin... |ftkuenzel@mathworks.com)
‘ * - cosmetic change to plotfunction Thomas Kin... |(Committer: Thomas Ktinzel
(added repair function Thomas Kiin... ||{tkuenzel@mathworks.com)
¢ added import function Thomas Kiin... [Date: 2023-12-08 15:55:29
® initial commit Thomas Kiin... M

=M Differences from parent 15c2d62a8dc
S b plotfunction.m

Branch and Tag Creation ~

Help Close

When you now switch back to the "main" branch, all your work is gone! Panic? No, remember git recreates the
working directory as it was when the commit was performed.

&

Step 8.1: merge "feature" branch into "main" branch. If there are no "conflicts", this will be automatic.

(optional Step 8.1b: resolve conflicts with the diff tool)

!\ Error X

Q Unable to execute command "git merge feature ".
Auto-merging plotfunction.m
CONFLICT (content): Merge conflict in plotfunction.m

Automatic merge failed; fix conflicts and then commit the result.

If you have conflicted files, use the file context menus to "View Conflicts” and "Mark Conflict Resolved”.

& plotfunction.m 0

The merge has not been completed. To keep on working you first have to resolve the conflicts and complete the
merge, so a "merge commit" can be made.

14

Open Enter
Open as Live Function

Show Details

Run F9
View Help F1

Show in Explorer

Create Zip File

Rename F2
Delete Delete
Compare Against >
Source Control > Manage Files...
Cut Ctrl+X View Details
Copy Ctrl+C & View and Commit Changes...
Ctrl+v ¥ Fetch
v Indicate Files Not on Path Push
Check Code Generation Readiness Pull
Remote
Branches

Submodules
Stashes
Refresh Git Status

ction)

AeM<dm@e-=

Revert Local Changes

Mark Conflict Resolved
Extract Conflict Markers to File
View Conflicts

Rename...

Move...

Show Revisions

Compare to Ancestor
Compare to Revision

Revert using Git

The diff-tool provides a convenient environment to resolve merge conflicts. Just pick the changes from left
(which is the branch to be merged) or not (keep the version in the target branch). In our case we will take the
first two from the left (click on the orange arrow icon in the middle) but not the third.

15

4 plotfunction_Rev_02a027634900514dcc6349fbb0babb69c4eb7f70_Copy_1.m vs. plotfunction_Rev_d106c59bed7a9fdadb250d4cffd5e47ea3136403_Copy 1.m = a X

COMPARISON

u & @ Refresh ? VM
Previous Next (Find ~ Filter Accept &
= Close =
NAVIGATE FILTER | CHANGES FINISH
plotfunction_Rev_02a027634900514dcc6349fbb0babb69c4eb7f70_Co... |T\ plotfunction.m * (Result) \T\
1 function figureHandle = plotfunction(ecgData) 1 function figureHandle = plotfunction(ecgData)
2 % 2 %
3 arguments 3 arguments
4 ecgData timetable 4 ecgData timetable
5 end 5 end
6 6
7 figureHandle = figure(); 7 figureHandle = figure();
8 8
9 HR = heartRateEstimator(ecgData);
10 -
11 subplet(2,3,1:3) 9 subplot(2,3,1:3)
12 [time, signal] = getNormedEcgRange(ecgData,8,60); 10 [time, signal] = getNormedEcgRange(ecgData,®,68);
=13 makeSubplot(time, signal, "Estimated HR="|+ num2str(HR)| == H 11 makeSubplot(time, signal, "Overview Data");
14 12
15 subplet(2,3,4); 13 subplot(2,3,4);
16 [time, signal] = getNormedEcgRange(ecgData,8,5); 14 [time, signal] = getNormedEcgRange(ecgData,®,5);
17 makeSubplot(time, signal, "First 5 seconds"); 15 makeSubplot(time, signal, "First 5 seconds");
18 16
19 subplet(2,3,5); 17 subplot(2,3,5);
20 [time, signal] = getNormedEcgRange(ecgData,38,35); 18 [time, signal] = getNormedEcgRange(ecgData,30,35);
21 makeSubplot(time, signal, "Middle 5 seconds"); 19 makeSubplot(time, signal, "Middle 5 seconds");
22 20
23 subplet(2,3,6); 21 subplot(2,3,6);
24 [time, signal] = getNormedEcgRange(ecgData,54,59); 22 [time, signal] = getNormedEcgRange(ecgData,54,59);
25 makeSubplot(time, signal, "Last 5 seconds"); 23 makeSubplot(time, signal, "Last 5 seconds");
26 end 24 end
27 25
28 %% Local functions 26 %% Local functions
29 function [time, normSignal] = getNormedEcgRange(ecgData 27 function [time, normSignal] = getNormedEcgRange(ecgDa
30 timeRange = timerange(seconds(tBegin),seconds(tEnd)); 28 timeRange = timerange(seconds(tBegin),seconds(tEnd));
31 signal = ecgData.Signal_uV(timeRange); 29 signal = ecgData.Signal_uV(timeRange);
32 time = ecgData.Time(timeRange); 30 time = ecgData.Time(timeRange);
33 normSignal = signal ./ max(signal); 31 normSignal = signal ./ max(signal);
34 normSignal = normSignal - mean(normSignal); 32 normSignal = normSignal - mean(normSignal);
35 end 33 end
36 34
37 function makeSubplot(time, signal, titleText) 35 function makeSubplot(time, signal, titleText)
=38 plot(time, signal); = =36 plot(time, signal, "k");
39 xlabel("Time (s)") 37 xlabel("Time (s)")
20 ylabel("Signal (norm.)") 38 ylabel("signal (norm.)")
a1 title(titleText) 20 title(titleText) .
42 N 40 N
insertion [Deletion EA Modification 3 Differences

Then click on "Accept & Close". To complete the merge, now make a commit - the message is prefilled for you
this time.

Done! The project should now look similar to this...

16

4\ Branches

Current Branch

Name: master

HEAD: f262fa9e9e50ac44cdd56e75c844b95c7998a8be
Branch Browser

Branches: master

5) Revert to HEAD

v ¥ switch $w Merge 8

Author

[5[¥A8] Merge branch ‘feature’
+ - call heartRateEstimator in plotfunction an[Thomas Kiin...
+ created heartRateEsstimator
| cosmetic change to plotfunction

\+ added repair function
+ added import function
.

initial commit

Thomas Kiin...

Thomas Kiin...
Thomas Kiin...
Thomas Kun...
Thomas Kiin...
Thomas Kiin...

Branch and Tag Creation ~

ID: f262fa9e9e50acd4cdd56e75c844b95c7998a8be
\Author: Thomas Kiinzel (tkuenzel@mathworks.com)
Committer: Thomas Kiinzel (tkuenzel@mathworks.com)
Date: 2023-12-08 15:57:29

Message:

Merge branch *feature’

= Differences from parent 2a1d9476bc458af6c92455eac4dcf3043¢
ﬁplotfunction.m
=M Differences from parent 99e692ff81d3f6821beea037d98fb78c37
-+ #) heartRateEstimator.m
Lo ﬂplotfunction.m

Help

Close

...and incorporate both the cosmetic changes and the heartrate estimation now!

By the way: you can always use the "Source Control - Compare to Revision" functionality to compare different
version of a file in your repo. This is the MATLAB diff-tool, which is also used to resolve merge conflicts. This

can also render changes in live-scripts.

17

Workshop Section 4: Achieving Reproducible Code Environments
With MATLAB Projects

Lo

Why Do We Care about Reproducible Environments?

Sometimes having the source code of a project is not at all sufficient to run it. Code can depend on
(specific versions of...) third-party toolboxes, expect certain environment variables or paths to be set and have
prerequisites of when and how to run the code that are not immediately transparent.

This is a hard problem that many different tools try to address and is, among other things, a reason why
software-containers like Docker, FlatPak or Snap are popular.

What Are Projects?

A "project” (in the context of our software platform) is a scalable environment where you can manage MATLAB
files, data files, requirements, reports, spreadsheets, tests, and generated files together in one place.

Projects can help you organize your work and collaborate. Projects promote productivity and teamwork by
helping you with common tasks.

* Find all the files that belong with your project.

* Create standard ways to set up and shut down the MATLAB environment across a team.

* Create, store, and easily access common operations.

* View and label modified files for peer review workflows.

» Share projects using built-in integration with Git™, Subversion® (SVN), or using external source control
tools.

A big example project (Documentation)

The MATLAB Documentation contains an involved example project: Please explore this to learn about
advanced features of Projects.

There is a nice video linked in the documentation that introduces the collaboration features of Projects: watch it
here on YouTube.

Here we will just try to highlight a few points in a...

Small example project

https://www.mathworks.com/help/matlab/matlab_prog/explore-an-example-project.html
https://www.mathworks.com/help/matlab/matlab_prog/explore-an-example-project.html
https://www.youtube.com/watch?v=guG29EyDoKg
https://www.youtube.com/watch?v=guG29EyDoKg

In this rather artificial example the function myfun.m in ./projdemo/mycode has a few prerequisites.

For demonstration purposes make sure that "mustbeonpath" is not on the path. It should look like this:

& 4_ReproducibleEnv
- projdemo
= mustbeonpath
.MATLABDriveTag
projectdemodata.mat
= mycode
_1 MATLABDriveTag
Emyfun.m
£ setupfun.m
1 MATLABDriveTag
% MATLABGoodCodingPractice_projects.mlx

myfun

The function fails with errors, because the code environment it expects is not present.

Create Project
In the Home Tab choose New - Project

HOME

@:ﬂ EEF ﬁ Go to Fi
New New New | Open (? Find File
Script Live Script |~ v
e “ 5 Q Script
Files EJ}' Live Script
B
Name = .
Bﬂ » [pren Function
E. 4 [sect Live Function
g
» 0] o—
» [17 =] Class
» [2 Test Class
rD 3 o
» 3 47 [=] System Object
del E Project
[.afoq
D 5eb From Git
D -d9fd Figure
D gita] ___
[gitic App
iy Simulink Model
[) REA
ﬁ Folder

Because we already have files we pick the "projdemo" subfolder als Project Root Folder

Create Project X

Name: ‘ DemoProject ‘

Folder: | /MATLAB Drive/GoodCodePracti oplsections/4_Reproducible. . [~ @j

OK | [Cancel

We could now follow the Setup-Wizard

ANADANNACAIT

] X
0 New to Projects? Get help setting up the P
| environment for your project. B

Learn more about projects

[1Do not show this again (Start Selup:

You can also skip the Wizard and open the Project Settings.

In the Details Tab you can write a good description or change the Project Root Folder.

Project Settings X
a

Details Detaile

Project Path Name

Task Automation DemoProject

Labels Description:

Folder Settings This is the small demo project for the Good Code Workshop

Dependency Settings

Custom Tasks

Simulink

Project root:
IMATLAB Drive/GoodCodeP! i R i w,wMSetas Current Folder

Project Path

Specify folders to add to the project path. These folders are added to the MATLAB search path
when you open the project, and removed when you close the project. v

| oK J [cancel |

Under the Project Path Tab we make sure, that the "mustbeonpath” folder is added to the list of Project Path
Folders.

Project Settings X

Project Path
Details
. Specify folders to add to the project path. These folders are added to the MATLAB search path
Project Path when you open the project, and removed when you close the project.

Task Automation 3 mycode [AddFolder...
Labels [Add with Subfolders...
Folder Settings

Dependency Settings
Custom Tasks
Simulink
Task Automation
Specify project files to automate startup and shutdown tasks. Add startup tasks to run MATLAB

scripts, open Simulink models, and load MAT-files.

Startup files:

And we add the "setupfun.m" function from the mycode subfolder as a startup-function under Task Automation.

Project Settings X

Project Path

Details

. Specify folders to add to the project path. These folders are added to the MATLAB search path
Project Path when you open the project, and removed when you close the project.
Task Automation [mustbeonpath [AddFolder.. |
Labels [mycode (Add with Subfoiders...|
Folder Settings
Dependency Settings
Custom Tasks
Simulink

Task Automation

Specify project files to automate startup and shutdown tasks. Add startup tasks to run MATLAB
scripts, open Simulink models, and load MAT-files.

Startup files:

Add...

\: OK H Cancel H Apply \

That is all for now. You can apply the changes and close the project.

= HOME PLOTS APPS PROECT x [INSERT VIEW

8 =2 & &) & %
J (&)

Open Share | Dependency Model Testing Model Design |~ || settings References 7 Close

- - Analyzer Dashboard ~ Dashboard Project

FILE TOOLS ENVIRONMENT SHORTCUTS CLOSE

Please note, that the Project-capabilities on MATLAB Online are limited. For the full version use
MATLAB Desktop.

Now reopen the project by double-clicking the .prj file

4 [GoodCodePracticesWorkshop
* (3 preparation
4 [sections
» (3 0 Tools
» [J 1_Refactoring
» [2 Testing
» (3 3 SourceControl
4 [4 ReproducibleEnv
4 [projdemo
» (3 mustbeonpath
» (3 mycode
» [3 resources
B3 20231211tempdata.mat
(il DemoProject.prj
MATLABGoodCodingPractice_projects.mlx
debugme.m
D .gitattributes

MATLAB automatically takes you to the Project Root Folder, sets up the path and runs the custom startup
function. We should be ready to go now!

myfun

Everyone you share your project with can setup the environment with one click now!

https://www.mathworks.com/help/matlab/matlab_prog/share-projects.html

4 Project - DemoProject

PROJECT

o O3 s = v
-
New Open |Share Dependency Class Model Testing
v v hd Analyzer Diagram Dashboard
FILE TOOLS
—————— [é:l Avrchive
Views ect (5)
D d i
= ependena f_'] Simulink Template JStbeonpath
Y oo fcode
C oolbox
O GitHub

.,,
=
|

Tool-Coupling FMU

Manage Export Profiles...

Change Share Options...

