
Introduction to Research Software Development With MATLAB
Clean Code and Fundamentals of Research Software Development with MATLAB

Hands-On Workshop

Dr. Thomas Künzel, MathWorks, 2024

Table of Contents

Learning Outcomes.. 1
Background / Philosophy..2

Key messages / activities... 3
Conclusions.. 3

Workshop Sections...4
Section 0: MATLAB IDE Tools.. 4
Section 1: Refactoring / Clean code... 4
Section 2: Testing... 4
Section 3: Source Control...4
Section 4: Reproducible Environment.. 4

Learning Outcomes
At the end of this workshop, you…

• Better understand how to write Clean Code and know modern MATLAB language and IDE features to
achieve it

• Learned about the concept of writing Tests for your code and implement them with MATLAB
• Understand how to use git for local Source Control of your MATLAB code and why it is important for

maintaining code quality
• Know why (and how!) to use git branches during development and how to merge
• Understand how to share and collaborate in a reproducible manner with MATLAB projects

You get a running start at pragmatic and collaborative development of maintainable research software with
MATLAB.

This workshop is not about knowing the correct code syntax or writing efficient MATLAB code!

If you want to become better at programming in MATLAB, consider these self-paced online courses:

1

Self-Paced Online Courses

Background / Philosophy
I am proposing that most software development in research is prototyping, tinkering and incremental
improvements.

In order to do this in a safe, reproducible and scalable manner I propose following the...

2

https://matlabacademy.mathworks.com/

Key messages / activities
• "Refactoring" - make your code CLEAN
• "Testing" - automatic confirmation that refactoring did not break functionality or that the new feature

works as intended
• "Source Control" - Make your work retracable, divide work into logical chunks (i.e. branches), collaborate

seamlessly with others
• "Reproducibility" - take care that the expected environment of the code (dependencies, variables, data,

folder structure etc.) can be rebuild easily

Conclusions
• Writing functionally working code is only the first step
• Research code is often “prototype” code that gets used maybe once… however you never know when it

may become critical for future you
• Code must be maintained through incremental changes

3

• A research software development project is not like building a house: Architect makes plan, builders
construct, customers live in it for years and only occasionally paint the walls

• A research software development project is more like gardening, it involves constant planting, observing
outcomes, formulating new plans, weeding, fighting bugs, replanting in new locations, etc.

• Writing code is human communication (with future-you or other developers), so aim to express your
intent clearly. Code that cannot be read or understood by you or other people is "write-only" code. This
code can in the future become useless at best, or even a severe liability that can bog down a whole
research project for weeks!

Almost everything in this workshop is meant as a suggestion and is up to debate! Pick what you need
for your project!

Modify and develop your own perspective!

Workshop Sections
The main parts of the workshop are stand-alone livescripts. First, let us make sure we are in the correct folder
and that all subfolders are added to the MATLAB search path:

if exist("MATLABGoodCodingPractice_main.mlx", "file") && exist("sections", "dir")
 addpath(genpath(fullfile(".","sections")));
else
 error("Please go to the correct workshop folder!");
end

Run the sections to set up the next workshop section.

Section 0: MATLAB IDE Tools
edit MATLABGoodCodingPractice_tools.mlx

Section 1: Refactoring / Clean code
edit MATLABGoodCodingPractice_cleancode.mlx

Section 2: Testing
edit MATLABGoodCodingPractice_testing.mlx

Section 3: Source Control
edit MATLABGoodCodingPractice_sourcecontrol.mlx

Section 4: Reproducible Environment
edit MATLABGoodCodingPractice_projects.mlx

4

Section 0: Development Tools

Before we start the workshop for real let us quickly talk about your toolkit for software development in MATLAB.

You can of course also develop MATLAB code in Jupyter Notebooks or in VS Code with the MATLAB
Extension, but MATLAB already comes with a great IDE that includes low-code Apps for productivity!

Table of Contents

MATLAB IDE Features... 1
MATLAB Debugger...2

MATLAB IDE Features
Here are just a few examples of powerful Editor/IDE features of MATLAB:

See the Code Analyzer ("Linter") at work?

mean(A,) % note the squiggly line!

Auto renaming: Change the first instance of "A." to "B." and accept suggestion with Shift+Enter!

Multi-Edit: hold ALT Key and drag mouse to generate multiple cursors! Then move all cursors to the right and
add a semicolon to all lines at once!

% Create UserStruct
A.firstName = 'Hans'
A.lastName = 'Imglück'
A.age = 42
A.height = 179
A.ID = 124738

Multi-line commands (...) make code more readable and better for source-control. Try it, and make line 9 (the
randn statement) into a multi-line command by adding ... after the comma and pressing RETURN

Automatic "restyling" of the code with smart-indent (icon or CTRL+I). Select lines 8-18 and press CTRL+I.

for idx = 1:10
k{idx} = randn(1,10);
disp(idx);
end
time = linspace(0, 1.0,200;
y = sin(2 .* pi .* 10 .* time)

1

https://www.mathworks.com/products/reference-architectures/jupyter.html
https://github.com/mathworks/MATLAB-extension-for-vscode
https://github.com/mathworks/MATLAB-extension-for-vscode

plot(time, y, ...
 'LineStyle','-',...
'Color','r',...
 'Marker','square',...
 'MarkerFaceColor','w');

Automatic refactoring into functions, for example the body of for loops. Select line 21 and choose Refactor ->
Convert to Function from the Live-Editor Tab.

x = linspace(-10,10,21);
for idx = 1:length(x)
 y(idx) = 10/x(idx);
end

MATLAB Debugger
The first call to the function "debugme.m" works...

y = debugme(150);

But the other call produces an error...

y = debugme(85);

Let us pretend this is a complicated case and look into the function:

edit debugme.m

Use left-click on line-numbers to set breakpoints...

...that halt the execution of the function at a specific line. This allows you to inspect the "internal state" of the
function.

Breakpoints can be "conditional" as well, just try a right-click on a line number...

2

... and enter a MATLAB expression that has to be "true" to halt the execution at that line.

Other useful conditional breakpoints can be set through the "Run" menu in the Editor-Tab:

As bug-fixing can often be detective work, these tools give you a lot of options to solve your case!

3

Workshop Section 1: Refactoring and Clean-Code

Table of Contents

What is Clean Code?..1
How do I write Clean Code?...2

Name Things Sensibly!...2
DRY - Don't Repeat Yourself!... 3
Avoid Mixed Levels of Abstraction!...4
Use Abstract Representations When Available!... 5

High-Level Data-Types and Containers..5
Object-Oriented Programming..6

Write good functions!.. 7
Anatomy of MATLAB Functions..8
Function Call Precedence ..10
Input Argument Validation... 11

Handle Errors and Write Robust Code!...11
Avoid Comments! (yes, I am serious!) [at least a little bit!]... 12

Exercise 1: Refactor a typical MATLAB Script..13

What is Clean Code?

There are many definitions of clean code, I prefer these:

Clean code is easy to read, easy to understand and easy to change!

In other words:

Clean code is maintainable, modifiable, extendable!

1

Clean code is not (exclusively) about coding style. Following the agreed style of the language you use (like
Python PEP8 style-guide) or the “scene”/group you work in is clearly recommended. However: this does not
ensure any of the points above! MathWorks does not offer an official style-guide for MATLAB.

Again, please note: you can find many books, articles and opinions about Clean Code and good coding
practices. This workshop is just a suggestion. Take from it what you can use, drop the rest!

How do I write Clean Code?

Some people say you should "Write code as if the next person to read it is a violent psychopath who
knows where you live."

Good advice, good advice... But let us get a bit more specific.

Name Things Sensibly!
• Don’t overthink it!
• Use words that convey your intention

% unclear intention
idx
iii
k

% clear intention
index
counter

• Avoid very generic names, avoid lab-jargon, avoid cute jokes

myfunc
foo
dV

• Functions often use verbs or actions as names that tell you what it does

parseUserInput

2

classifyImage
saveData

• Variables get adjectives or nouns that tell you about the contained data

isValidUser
hasConnection

userName
voltageTrace

• Too long and too short is not good

% Which variable name has the correct lenght?
uN
usrN
userName
userNameWebInputNotSanitized

• Suggestion: functions and variables start lower-case and use camel case/mixed-case to separate words,
classes start uppercase

variableName
functionName

ClassName

DRY - Don't Repeat Yourself!
Look at this (very typical) MATLAB code:

[x,y] = receiveData();% x ranges 0 - 2*pi in 32 steps, contains 3x data
highresx = linspace(0,2*pi,256);

p1 = polyfit(x{1},y{1},9);
fity1 = polyval(p1, highresx);

p2 = polyfit(x{2},y{2},9);
fity2 = polyval(p2, highresx);

p3 = polyfit(x{3},y{3},9);
fity3 = polyval(p3, highresx);

What if you want to change the polynomial order of the fit? You have to make three changes (what if you forget
one?). Also, what if your new data contains 4 or only 2 measurements?

Now look at the refactored version:

3

for n = 1:length(x)
 [p{n}, fity{n}] = performFit(x{n}, y{n}, highresx);
end

function [p, fity] = performFit(x, y, highresx)
p = polyfit(x, y, 9);
fity = polyval(p, highresx);
end

Same lines of code, but more versatile ("length(x)") and more modifiable (only one place to change the
polynomial order).

Avoid Mixed Levels of Abstraction!
The following code (from a real project of mine) is really hard to read! I propose that this is mainly because
low-level and high-level operations are intermixed.

prompt = {"Name:","Experiment-Nr:"};
dlgtitle = "Request data";
dims = [1 35];
answer = inputdlg(prompt,dlgtitle,dims);
userList = load("userList.mat");
if ismember(lower(answer{1}),userList)
 experiments = requestExperiments(answer{1});
 if ismember(str2double(answer{2}), experiments)
 data = requestData(lower(answer{1}), str2double(answer{2})); %#ok<NASGU>
 else
 error("DataProvider:BadExpID","Invalid Experiment-ID");
 end
else
 error("DataProvider:BadUser","Unknown Experimenter");
end

The refactored version is a lot easier to understand. This is because the main program now only has "high-
level" operations with good names which make very clear what the program does

[rawName, rawID] = getUserQuery();
userName = validateName(rawName);
expID = validateID(userName, rawID);
data = requestData(userName, expID);

Of course I had to create three function for that:

4

function [name, expID] = getUserQuery()
prompt = {"Name: ", "Experiment-Nr.: "};
dlgtitle = "Request data";
dims = [1 35];
answer = inputdlg(prompt, dlgtitle, dims);
name = lower(answer{1});
expID = str2double(answer{2});
end

function userName = validateName(userName)
userList = load("userList.mat");
errorMsg = "Unknown Username";
assert(ismember(userName, userList), errorMsg); %guard statement instead of nested
if-else...
end

function expID = validateID(userName, expID)
experiments = requestExperiments(userName);
errorMsg = "Unknown Experiment-ID";
assert(ismember(expID, experiments), errorMsg); %guard statement instead of nested
if-else...
end

Use Abstract Representations When Available!
As we just learned hiding the "nitty gritty" details behind function calls can make a program very readable.
Similarly, high-level constructs like specialized data-types and containers can make very readable code.

High-Level Data-Types and Containers
Of course you can represent all your data in low-level types like arrays of double and char. But this make you
write (and read!) a lot of extra code on different levels of abstractions. MATLAB offers a lot of specialized data
types with dedicated methods.

5

Another good example are datastores or tall-arrays - they are needed to work with data that exceeds local
memory, but they also allow you to do technically complex things in a few lines of very clean code!

Object-Oriented Programming
What if the MATLAB datatypes are not abstract enough to express your intent?

Let us say, your unit of processing is the “Experimental-Session” (which is a combination of images, time-series
and metadata). All operations in your code deal with processing those “conceptually related” data.

Consider defining a Class (“ExperimentalSession”) that encapsulates data (“Properties”) and custom operations
(“Methods”)! This makes VERY readable code because of great separation of the abstraction levels but is
considered relatively advanced programming.

6

https://www.mathworks.com/help/matlab/datastore.html
https://www.mathworks.com/help/matlab/tall-arrays.html

Note: the code is not runnable because defining a class in a script is not allowed.

The actual code to create and enlarge a rectangle is very clean now:

rect1 = Rectangle;
rect1.enlarge(5,1)

Write good functions!
A large part of what we talked about so far leads to the following conclusion: structure your code in well written
functions!

Functions in MATLAB are superior to scripts in many ways. A good function "does one thing". Thus, good
functions are automatically short and concise. If you find yourself scrolling up and down in a very complicated
and long function - maybe it can be refactored into smaller functions that do more specific tasks?

7

Another useful rule of thumb is: A good function should have "as few inputs as possible". If your function
has dozens of input parameters, maybe it is time to refactor it?

Functions have their own protected variable workspace (scope)! This is good, as you can (re-)use clear
variable names without the fear of overwriting other data. However, this makes you work a bit more during
coding, as you have to consider which variables are available inside the function and which are not.

My opinion (we can argue!): use live-scripts [*.mlx] for workflow examples and functions [in separate *.m files]
for all operational code

Anatomy of MATLAB Functions

If you forget how to write a function, MATLAB will help you with this: you can create a correctly styled, empty
"New" Function with the GUI

8

...automatically refactor code into functions

or export functionality from Apps and LiveTasks into auto-generated functions!

% (...)
[xData, yData] = prepareCurveData(t, xx);

9

% Set up fittype and options.
ft = fittype('sin1');
opts = fitoptions('Method', 'NonlinearLeastSquares');
opts.Display = 'Off';
opts.Lower = [-Inf 0 -Inf];
opts.StartPoint = [1.19675885778667 9.42477796076938 0.12581876820584];

% Fit model to data.
[fitresult, gof] = fit(xData, yData, ft, opts);

Function Call Precedence
How does MATLAB know that you want to call a custom function you wrote? When MATLAB encounters a word
in program code it will stick to the following order when trying to figure out what you are referring to:

1: Look for a variable called penguin in the current workspace

2: Look for a script or function called penguin

2.1: Is it a nested or local function in the current file?

2.2: Is it a file of that name in the current folder or subfolders of the current folder?

2.3: Is a file of that name anywhere on the MATLAB search path?

Structuring your code as good functions with good names will make your code project more accessible. Putting
functions in subfolders, possibly with special names, will support this:

10

Input Argument Validation
The use of function argument validation is optional in function definitions. But argument validation is very useful
in functions that can be called by any code and where validity of the arguments must be determined before
executing the function code.

Argument validation also allows definition of default values

Functions that are designed for use by others can benefit from the appropriate level of restriction on arguments
and the opportunity to return specific error messages based on the argument validation checks.

Check out the Documentation on the arguments block!

Handle Errors and Write Robust Code!
• Fail early: validate inputs or intermediate results as soon as possible
• Use assert statements to guard your program (instead of the horror of nested if-else statements)
• Fail gracefully: throw human-readable error messages and make sure to leave the machine in a

reasonable state
• Consider try/catch blocks to handle “non-breaking” errors or clean-up upon error

11

https://www.mathworks.com/help/matlab/matlab_prog/function-argument-validation-1.html

try
 filehandles = unrealiableInput();%generates many files
 analysis = analyzeData(filehandles);%this might fail
catch
 %delete temporary files
 %generate meaningful message to user
end

Robust Code makes as little assumptions as possible

• Avoid hardcoded path names (mind the file-separators and different home folder etc)! Functions like
filesep, userpath or fullfille can be helpful to write OS-agnostic and thus robust code

imread("/home/user/thomas/Documents/MATLAB/myimages/urlaubsfoto.jpg") % only works
on linux!
imread("C:\Users\tkuenzel\Documents\MATLAB\myimages\urlaubsfoto.jpg") % only works
on windows!
imread(fullfile(userpath, "myimages","urlaubsfoto.jpg")) % works on all OS

• Check we run in the correct folder, check if output folders exist

if ~exist("output", "dir")
 mkdir("output")
end

• Check for existence of files (even the ones your program just created)

assert(exist("myOutput.mat","file"), "Output-file does not exist!")

• Use dynamic output file names (otherwise results will be overwritten)

tempdir % returns the folder used for "temporary" files (OS-specific!)
fileName = fullfile(tempname) % returns a unique, random filename

• If you change directories, move the user back where we started in the end

oldDir = cd(newDir);
% ...
% Some work is done
%...
cd(oldDir);

Avoid Comments! (yes, I am serious!) [at least a little bit!]
• Comments must be maintained alongside the code: twice the work and can be difficult
• Comments can do more harm than good if not maintained

12

• Comments are not a source control system

My advice: avoid comments as much as possible, MATLAB code is already the most concise way to
express your intent!

Exercise 1: Refactor a typical MATLAB Script

Take a look at this typical MATLAB script:

edit plotscript.m

Can you refactor it into a function, making it more versatile and expandable by applying the Clean Code
principles we discussed above?

Consider to make the timetable T an input to the function! Can you make sure the user provides the correct
input?

(Hint: if you need inspiration you can look into the "plotfunction.m" file... this is what I thought could be a
refactored version of the script)

13

Workshop Section 2: Testing

What is Testing?
• Testing or “Unit Testing” uses code that calls your operational program units (most often functions) in

various ways and checks whether the behavior is as expected
• Testing frameworks are used to automate running this code
• “Passing the unit tests” as a requirement for code to be committed to source control helps write maybe

more bug-free code
• Unit tests are the first users of the code and show the expected behavior of your program. If unit tests

exist in a project, try studying them!

Do I really need so much extra code for my small research software project?

• For analysis tools I felt at least an “completion test” (running e.g. an example dataset that creates a
known result x) to be necessary

• Be pragmatic, the amount of overhead work should match the size and scope of the project

Next time: aim to write ONE test for your next function

MATLAB Test
MATLAB now has a Test Toolbox called "MATLAB Test". MATLAB Test provides tools for developing, executing,
measuring, and managing dynamic tests of MATLAB code, including deployed applications and user-authored
toolboxes. It helps you go to scale with your projects and test suites. This is however out of scope for this
workshop.

Testing & CI/CD (beyond our scope today!)
In larger project or production settings testing is often deeply integrated in the workflow. This allows agile
development AND production and deployment of high-quality code artifacts. These workflows are often
described under the term "continuous integration" and "continuous deployment". Here tests ("verify") are
automatically performed when it is submitted to a version control system.

1

https://www.mathworks.com/products/matlab-test.html

MATLAB and Simulink offer a wide range of capabilities and integrations for leading CI/CD systems. If this
sounds like something your team must use, please refer to the documentation on CI or contact us! As
fascinating as this is, this topic is out of scope for this workshop as well.

MATLAB Unit Testing Framework
How do you write test code? In principle you could create your own functions and scripts as tests and run them
as needed. But you will soon notice it is more convenient to use the MATLAB Testing Framework.

Unit tests can be script-based, function-based and class-based - versatility but also complexity increases from
left to right.

Here we will aim for the middle-ground and discuss function-based unit-testing

To understand this better we follow a small documentation example. Let "quadraticSolver.m" be the function we
develop...

edit quadraticSolver.m

Lets quickly visualize what it does:

x = linspace(-3,3,600);
a = -1;

2

https://www.mathworks.com/solutions/continuous-integration.html
https://www.mathworks.com/help/matlab/matlab_prog/ways-to-write-unit-tests.html
https://www.mathworks.com/help/matlab/matlab_prog/write-script-based-unit-tests.html
https://www.mathworks.com/help/matlab/matlab_prog/write-function-based-unit-tests.html
https://www.mathworks.com/help/matlab/matlab_prog/author-class-based-unit-tests-in-matlab.html

b = -2;
c = 2;
y = a.*x.^2 + b.*x + c;
plot(x,y);
zc = quadraticSolver(a, b, c);
hold on
plot(zc,[0 0],"rx");

Makes sense, right?

Now let us take a look at the corresponding test function. Test functions must have the same name as the
function under test plus the keyword "test" at the beginning or end of the name. Thus our test function for
quadraticSolver.m is called quadraticSolverTest.m:

edit quadraticSolverTest.m

You run the suite of tests for your function from the commmand line (or code) with

results = runtests("quadraticSolverTest.m")

We see all the test succeeded. The result struct contains valuable diagnostic information, which is probably
useful when a test fails unexpectedly!

Please also note how the "fixture" functions were executed: the setupOnce and teardownOnce were run at
the beginning and end of the suite, the setup and teardown were run repeatedly at the beginning and end
of each test in the suite. This allows you to create the appropriate environment for your functions under test so
they can actually run or tidy-up generated files, figures etc. after a function ran.

The function-based tests in MATLAB are an ideal compromise of versatility and ease of use! They are sufficient
for almost all use-cases.

Test-Driven Development
Some developers practice test driven development: they write the test first and then implement the feature to
pass the test!

Let us explore this philosophy and add a feature to our function with test-driven development: The function
quadraticSolver.m could also tell us whether the solution it found was real or imaginary. Thus we could demand
a second output argument which is a boolean which is true if the quadratic function has a real solution. Easy
right?

We'll add a new test to the suite first, i.e. uncomment lines 19-22 in quadraticSolverTest.m!

%function testBooleanOutput(testCase)
%[actSolution, hasRealSolution] = quadraticSolver(1,2,10);
%assert(hasRealSolution);
%end

3

We run the test suite and see - quite expectedly - one test fails with errors!

results = runtests("quadraticSolverTest.m")

Of course it fails, since we haven't even implemented the new feature yet. However, this helps us structure our
work. We can go home and come back next week. When we run the test suite we immediately remember what
the next steps were. Or someone else can run the test suite and see the missing feature and implement it?

Let us add the feature now change line 1 to this code (without the % of course):

%function [roots, hasRealSolution] = quadraticSolver(a,b,c)

and add this code to line 13 (uncommented):

%hasRealSolution = isreal(roots);

When we now run the test suite...

results = runtests("quadraticSolverTest.m")

... it passes. We successfully implemented a new feature with Test-Driven Development! This code is ready for
committing to source control... but that is the next section of the workshop!

Exercise 2: Write a Unit Test
Now it is your turn! Complete the plotfunctionTest.m by implementing a unit test for the plotfunction.m
(remember, this was my suggested solution of the refactoring exercise). Think about adding some cleanup
code to the teardown fixture, otherwise you'll clutter your desktop with figure windows each time you run the test
suite.

All hints should be in the file. If you really get stuck take a look at "solution_plotfunctionTest.m".

edit plotfunctionTest.m

4

Workshop Section 3: Source-Control & git Integration

Table of Contents

What is git and how does it work?.. 1
Basic git workflow... 2
Branches...2
Using git in the MATLAB IDE..3

System Calls...3
New programmatic git commands.. 4
Git IDE Integration (classical Desktop)... 5
Git IDE Integration (new Desktop and MATLAB Online)...8

An extended git exercise/code-along with branching..11

What is git and how does it work?
• Git is a distributed version control system, a software that records changes in files over time and allows

recall of specific versions
• “Distributed” means every client has the complete history (not just the latest state), so many identical

copies of the project might exist. There can be a remote repository (with lots of tools to synchronize local
states to the remote states) but it is not required. Often git it is used locally only.

• Git is focused on saving the complete state of the project (“snapshot”) at a given time, not only the
differences (in a smart way, however, to save space and processing time)

• Git calculates a cryptographic checksum from every snapshot and uses that to verify and reference the
state

1

Basic git workflow
Workflows for git are usually with remote repositories and collaboration in mind. It is however perfectly fine (and
actually often desirable) to only work with a local repository.

Branches
• Branches are encouraged in git! Use branches of your project for logically separate aspects of your work,

testing, alternate ideas, etc. especially when working in a collaborative project!
• A repository has at least one branch: the current commit and its series of parent commits (most often

called “master” or “main” branch)
• Commits can have multiple “children” (a branching point) and multiple “parents” (a merge point)
• git maintains a pointer called HEAD which identifies the currently active commit.

2

image from Git - Branches auf einen Blick (git-scm.com)

Using git in the MATLAB IDE
MATLAB ships a built-in version of git, so in principle you do not have to install anything.

There is several ways to interact with git from within MATLAB. You should experiment and use the approach
that makes you most productive!

System Calls
This works well when you have git installed and configured system-wide. This is advisable anyway, so maybe
this is for you:

error("do not run this section as whole please"); % this code-section should not be
run

% create a new repository in current folder
!git init

% clone a remote repository in current folder
!git clone <remoterepository.git> <local folder name>

% merge remote changes into your local repository
!git pull

% stage changed <file>
!git add <file>
!git add .

% commit (with message) / -a flag skips the staging (= add .)
!git commit -m "Message”
!git commit –a -m "Message”

% shows state of current directory
!git status

3

https://git-scm.com/book/de/v2/Git-Branching-Branches-auf-einen-Blick

% shows timeline of commits
!git log

% push local changes to remote repository
!git push

% creates a new branch at the current commit state
!git branch <name>

% points HEAD to the branch <name> (the working directory will be set-up in the
appropriate state).
% All following commits will extend the series of this branch
!git checkout <name>

%integrates the changes in <branch> into the branch that the current HEAD points to
[conflicts could arise!]
!git merge <branch>

New programmatic git commands
In R2023b new programmatic tools to interact with git were introduced. These can be in code (think about
CI/CD or other complex workflows) or entered into the Command Window

error("do not run this section as whole please"); % this code-section should not be
run

% create a new repository in current folder
repo = gitinit

% clone a remote repository in current folder
repo = gitclone(URL)

%get repo-object for existing repository
repo = gitrepo

% merge remote changes into your local repository
pull(repo)

% stage changed <file>
add(repo,filename)

% commit (with message) / -a flag skips the staging (= add .)
commitDetails = commit(repo,Message=commitMessage)

% shows state of current directory
statusDetails = status(repo)

% shows timeline of commits
commitHistory = log(repo)

4

% push local changes to remote repository
push(repo)

% creates a new branch at the current commit state
branchDetails = createBranch(repo,name)

% points HEAD to the branch <name> (the working directory will be set-up in the
appropriate state).
% All following commits will extend the series of this branch
branchDetails = switchBranch(repo,name)

%integrates the changes in <branch> into the branch that the current HEAD points to
[conflicts could arise!]
merge(repo,commitIdentifier) % commmitIdentifier can be branch, commit, or tag

Git IDE Integration (classical Desktop)
You can also interact with git in a graphical manner in the IDE. Here I am showing Screenshots from MATLAB
classical Desktop.

Your main interaction principle is to right-click in the Current Folder tab. You can then interact with git in many
ways with the commands under the "Source Control" menupoint:

5

Note the markers next to the files in the Current Folder tab:

Here we have unstaged files (white), files that are in the repository with changes (blue) and without changes.

If you want to add one of the unstaged files to future commits: right-click - Source Control - Add to git

6

Once it is staged (but not committed) the file gets a new marker:

Under the "Source Control - Branches" Submenu you can find the graphical branch-manager App. Here you
can create, checkout and merge branches.

7

Git IDE Integration (new Desktop and MATLAB Online)
You can also interact with git in a graphical manner in the IDE. Here I am showing Screenshots from MATLAB
Online. This also applies to the new Desktop.

Your main interaction principle is to right-click in the Current Folder tab. You can then interact with git in many
ways with the commands under the "Source Control" menupoint:

8

Note the markers next to the files in the Current Folder tab:

Here we have unstaged files (white), files that are in the repository with changes (blue) and without changes.

If you want to add one of the unstaged files to future commits: right-click - Source Control - Add in Source
Control

9

Once it is staged (but not committed) the file gets a new marker:

The branch manager opens as a new graphical tab in MATLAB Online. The controls to create, checkout and
merge branches are moved into the GIT ribbon on top.

10

An extended git exercise/code-along with branching
We will now, building upon our plotfunction example from the refactoring and testing sections, develop an
exemplary git repository. Please follow along while I go through the exercise. And please interrupt me at any
moment I am unclear, fast or slow!!

Step 1.: Setup and initial commit of our repository

Step 1.1: create a new folder

Step 1.2: initialize an empty git repository in this folder

% make a new folder
% cd into the new folder
gitinit % or use the GUI

Step 1.3: copy plotfunction.m and plotfunctionTest.m and the data folder into the new folder

Step 1.4: add the files to Source Control

Step 1.5: make initial commit

11

https://xkcd.com/1296/

Next we want to create an import-function and a preprocess function to be able to load the csv-files in the data
folder and correct some artifacts in the data. We will either develop these from low-code tools or copy from the
workshop folder "3_SourceControl" in case we are short on time. In any event, lets make several commits. so
we have something to work with.

Step 2.1: create or copy import function

Step 2.2: add import function to source control

Step 2.3: commit import function

Step 3.1: create or copy repair function

Step 3.2: add repair function to source control

Step 3.3: commit repair function

Step 4.1: call repair function in import function

Step 4.2: commit import function

We should now run the test(s) again and make sure everything works. Let us check the log:

repo = gitrepo;
log(repo)

12

Let us now create a branch called "feature" based on the last commit and demonstrate how
development can move on in different branches.

Step 5.1: Use the BranchManager (Right-Click --> Source Control --> Branches) to create a branch at the
current commit, call it "feature".

Step 5.2: in the "main" branch - make cosmetic change to plotfunction.m to demonstrate divergent development

Step 5.2b (optional): If you want to "experience" a merge conflict, change the title of the first subplot in line from
"All data" to something else, maybe "Complete Recording".

Step 5.3: commit changed plotfunction to main branch

Step 6.1: switch to "feature" branch

Step 6.2: note that the cosmetic changes to plotfunction are gone!

Step 6.3: develop or copy heartRateEstimator function

Step 6.4: add heartRateEstimator function to source control

Step 6.5: commit heartRateEstimator to "feature" branch

Step 7.1: call heartRateEstimator in the plotfunction and add result to figure by using the estimated heartrate in
the title of the first subplot

Step 7.2. commit modified plotfunction to "feature" branch

The project looks like this now:

13

When you now switch back to the "main" branch, all your work is gone! Panic? No, remember git recreates the
working directory as it was when the commit was performed.

Step 8.1: merge "feature" branch into "main" branch. If there are no "conflicts", this will be automatic.

(optional Step 8.1b: resolve conflicts with the diff tool)

The merge has not been completed. To keep on working you first have to resolve the conflicts and complete the
merge, so a "merge commit" can be made.

14

The diff-tool provides a convenient environment to resolve merge conflicts. Just pick the changes from left
(which is the branch to be merged) or not (keep the version in the target branch). In our case we will take the
first two from the left (click on the orange arrow icon in the middle) but not the third.

15

Then click on "Accept & Close". To complete the merge, now make a commit - the message is prefilled for you
this time.

Done! The project should now look similar to this...

16

...and incorporate both the cosmetic changes and the heartrate estimation now!

By the way: you can always use the "Source Control - Compare to Revision" functionality to compare different
version of a file in your repo. This is the MATLAB diff-tool, which is also used to resolve merge conflicts. This
can also render changes in live-scripts.

17

Workshop Section 4: Achieving Reproducible Code Environments
With MATLAB Projects

Why Do We Care about Reproducible Environments?
Sometimes having the source code of a project is not at all sufficient to run it. Code can depend on
(specific versions of...) third-party toolboxes, expect certain environment variables or paths to be set and have
prerequisites of when and how to run the code that are not immediately transparent.

This is a hard problem that many different tools try to address and is, among other things, a reason why
software-containers like Docker, FlatPak or Snap are popular.

What Are Projects?
A "project" (in the context of our software platform) is a scalable environment where you can manage MATLAB
files, data files, requirements, reports, spreadsheets, tests, and generated files together in one place.

Projects can help you organize your work and collaborate. Projects promote productivity and teamwork by
helping you with common tasks.

• Find all the files that belong with your project.
• Create standard ways to set up and shut down the MATLAB environment across a team.
• Create, store, and easily access common operations.
• View and label modified files for peer review workflows.
• Share projects using built-in integration with Git™, Subversion® (SVN), or using external source control

tools.

A big example project (Documentation)
The MATLAB Documentation contains an involved example project: Please explore this to learn about
advanced features of Projects.

There is a nice video linked in the documentation that introduces the collaboration features of Projects: watch it
here on YouTube.

Here we will just try to highlight a few points in a...

Small example project

1

https://www.mathworks.com/help/matlab/matlab_prog/explore-an-example-project.html
https://www.mathworks.com/help/matlab/matlab_prog/explore-an-example-project.html
https://www.youtube.com/watch?v=guG29EyDoKg
https://www.youtube.com/watch?v=guG29EyDoKg

In this rather artificial example the function myfun.m in ./projdemo/mycode has a few prerequisites.

For demonstration purposes make sure that "mustbeonpath" is not on the path. It should look like this:

myfun

The function fails with errors, because the code environment it expects is not present.

Create Project
In the Home Tab choose New - Project

2

Because we already have files we pick the "projdemo" subfolder als Project Root Folder

We could now follow the Setup-Wizard

You can also skip the Wizard and open the Project Settings.

In the Details Tab you can write a good description or change the Project Root Folder.

Under the Project Path Tab we make sure, that the "mustbeonpath" folder is added to the list of Project Path
Folders.

And we add the "setupfun.m" function from the mycode subfolder as a startup-function under Task Automation.

3

That is all for now. You can apply the changes and close the project.

Please note, that the Project-capabilities on MATLAB Online are limited. For the full version use
MATLAB Desktop.

Now reopen the project by double-clicking the .prj file

MATLAB automatically takes you to the Project Root Folder, sets up the path and runs the custom startup
function. We should be ready to go now!

myfun

Everyone you share your project with can setup the environment with one click now!

4

https://www.mathworks.com/help/matlab/matlab_prog/share-projects.html

5

