
Programming in OpenMP

Christian Terboven & Members of the OpenMP Language Committee
1

Programming OpenMP

Christian Terboven

Scoping

Programming in OpenMP

Christian Terboven & Members of the OpenMP Language Committee
2

• Managing the Data Environment is the challenge of OpenMP.

• Scoping in OpenMP: Dividing variables in shared and private:

– private-list and shared-list on Parallel Region

– private-list and shared-list on Worksharing constructs

– General default is shared for Parallel Region, firstprivate for Tasks.

– Loop control variables on for-constructs are private

– Non-static variables local to Parallel Regions are private

– private: A new uninitialized instance is created for the task or each thread executing the construct

• firstprivate: Initialization with the value before encountering the construct

• lastprivate: Value of last loop iteration is written back to Master

– Static variables are shared

Scoping Rules

Tasks are
introduced later

Programming in OpenMP

Christian Terboven & Members of the OpenMP Language Committee
3

• Global / static variables can be privatized with the threadprivate directive

– One instance is created for each thread

• Before the first parallel region is encountered

• Instance exists until the program ends

• Does not work (well) with nested Parallel Region

– Based on thread-local storage (TLS)

• TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)

Programming in OpenMP

Christian Terboven & Members of the OpenMP Language Committee
4

• Global / static variables can be privatized with the threadprivate directive

– One instance is created for each thread

• Before the first parallel region is encountered

• Instance exists until the program ends

• Does not work (well) with nested Parallel Region

– Based on thread-local storage (TLS)

• TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)

Programming in OpenMP

Christian Terboven & Members of the OpenMP Language Committee
5

Back to our example

C/C++

int i, s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i]; }

}

OpenMP Tutorial

Members of the OpenMP Language Committee
6

#pragma omp parallel

{

#pragma omp for

for (i = 0; i < 99; i++)

{

 s = s + a[i];

}

} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99

 s = s + a(i)

end do

do i = 0, 24
 s = s + a(i)
end do

do i = 25, 49
 s = s + a(i)
end do

do i = 50, 74
 s = s + a(i)
end do

do i = 75, 99
 s = s + a(i)
end do

OpenMP Tutorial

Members of the OpenMP Language Committee
7

#pragma omp parallel

{

 double ps = 0.0; // private variable

#pragma omp for

for (i = 0; i < 99; i++)

{

 ps = ps + a[i];

}

#pragma omp critical

{

 s += ps;

}

} // end parallel

(done)

do i = 0, 99

 s = s + a(i)

end do

do i = 0, 24
 s1 = s1 + a(i)
end do
s = s + s1

do i = 25, 49
 s2 = s2 + a(i)
end do
s = s + s2

do i = 50, 74
 s3 = s3 + a(i)
end do
s = s + s3

do i = 75, 99
 s4 = s4 + a(i)
end do
s = s + s4

Programming in OpenMP

Christian Terboven & Members of the OpenMP Language Committee
8

• In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.

– reduction(operator:list)

– The result is provided in the associated reduction variable

– Possible reduction operators with initialization value:
+ (0), * (1), - (0), & (~0), | (0), && (1), || (0), ^ (0), min

(largest number), max (least number)

– Remark: OpenMP also supports user-defined reductions (not covered here)

The Reduction Clause

C/C++

int i, s = 0;

#pragma omp parallel for reduction(+:s)

for(i = 0; i < 99; i++)

{

s = s + a[i];

}

OpenMP Tutorial

Members of the OpenMP Language Committee
9

PI

Example

OpenMP Tutorial

Members of the OpenMP Language Committee
10

Example: Pi (1/2)

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 = න
0

1 4

1 + 𝑥2

OpenMP Tutorial

Members of the OpenMP Language Committee
11

Example: Pi (2/2)

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 = න
0

1 4

1 + 𝑥2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

