OpenMIP

Programming OpenMP

Scoping

Christian Terboven RWTH

1 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

OpenMIP

Scoping Rules

* Managing the Data Environment is the challenge of OpenMP.

e Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs
— General default is shared for Parallel Region, firstprivate for Tasks.

— Loop control variables on for-constructs are private [J
— Non-static variables local to Parallel Regions are private

— private: A new uninitialized instance is created for the task or each thread executing the construct
 firstprivate: Initialization with the value before encountering the construct
* lastprivate: Value of last loop iteration is written back to Master

— Static variables are shared

p) Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

OpenMIP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive
— One instance is created for each thread
* Before the first parallel region is encountered
* Instance exists until the program ends
* Does not work (well) with nested Parallel Region
— Based on thread-local storage (TLS)
* TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword thread (GNU extension)

C/C++ Fortran
static int 1i; SAVE INTEGER :: 1
#fpragma omp threadprivate (1) 'Somp threadprivate (i)

3 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

Privatization of Global/Static Variables

OpenMIP

Global / static variables can be privatized with the threadprivate directive “e
(-

— One instance is created for each thread
* Before the first parallel region is encountered
* Instance exists until the program ends

* Does not work (well) with nested Parallel Region

— Based on thread-local storage (TLS)
e TlIsAlloc (Win32-Threads), pthread_key_create (P“'%ehre% @%/Word __thread (GNU extension)

°6’€°e 4’6<\®

C/C++

static int 1

#pragma rjgs

KO
N

o’
20
qs(db»\i)

X
0" \

Fortran

SAVE INTEGER :: 1
'Somp threadprivate (i)

e

Programming in OpenMP

Christian Terboven & Members of the OpenMP Language Committee

OpenMIP

Back to our example

C/C++

int 1, s = 0;

#pragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#pragma omp critical
{ s =8 + alil]l; }

5 Programming in OpenMP
Christian Terboven & Members of the OpenMP Language Committee

It‘s your turn: Make It Scale! OpenMP

#pragma omp parallel

doi=0, 24
{ s=s+ali)

end do
#pragma omp for I
for (1 = 0; 1 < 99; 1i++) S=S+'a(i)

{ . end do

doi=0, 99
s=s+a(i) | =P .

s = s + alil; end do d0|=50,7{l
s=s+ a(i)

end do

}

doi=75,99
} // end parallel enézg+a(|)

OpenMP Tutorial
Members of the OpenMP Language Committee

(done)

#pragma omp parallel

{
double ps = 0.0;

#pragma omp for
for (1 = 0; 1 < 99; i++)
{

// private variable

ps = ps + ali];
}

s += ps;

}
} // end parallel

7 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

doi=0, 24
s, = s, +ali)

end do

S=S+5,

doi=0, 99
s=s+ a(i)
end do

doi=25, 49
s, =5, +ali)

end do

S=s+s,

doi=50, 74
S3 =55 +afi)

end do

S=S+ S5

doi=75, 99

s, =5, +ali)
end4do)
S=S+s,

The Reduction Clause

— reduction (operator:1list)

— The result is provided in the associated reduction variable

C/C++

int 1, s =

for(i = 0;
{

S:

}

0;

s + alil;

it++)

fpragma omp parallel for reduction (+:s)
i < 99;

— Possible reduction operators with initialization value:

+ (0), * (1), -
(largest number),

— Remark: OpenMP also supports user-defined reductions (not covered here)

Programming in OpenMP

(0),

max

&

(NO)/ | (O)/
(least number)

Christian Terboven & Members of the OpenMP Language Committee

&&

(1),

OpenMIP

In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.

Example OpenMP

Pl

OpenMP Tutorial
Members of the OpenMP Language Committee

Example: Pi (1/2)

double f(double x)

{
return (4.0/ (1.0 + x*x));

}

double CalcPi (int n)
{
const double fH =1.0/(double) n;
double fSum = 0.0;
double fX:
inti;

#pragma omp parallel for
for i=0;1<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

10 OpenMP Tutorial
Members of the OpenMP Language Committee

1 4
fo 1+ x?
4F e
35 / ‘!..h‘ 135
-
3t i
25t »._\ s
-
at M i
15} \15
1t 4i
ast {os
0 0
05 05 i 15

Example: Pi (2/2) OpenMP

double f(double x) 1 4
{ . f
2
return (4.0/ (1.0 + x*x)); o 1+x
}
double CalcPi (int n) - — - - T4
{ 3.5/ hh"‘-.. 135
const double fH =1.0/(double) n; N I L
double fSum =0.0; ""'-.
double fX: aay I I

inti; 27 o £
15} \15

#pragma omp parallel for private(fX,i) reduction(+:fSum) 1 1

for I=0;i<n;i++) . los

{ 0 0
fX =fH * ((double)i + 0.5); e ‘ 0 ! s
fSum +=f(fX);

}

return fH * fSum;

11 OpenMP Tutorial
Members of the OpenMP Language Committee

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

