Categories
Pages
-

Chemistry for sustainable building materials

Kategorie: ‘Ionic Conductive Polymers’

17th ICPIC conference papers reprinted

November 9th, 2024 | by

The articles on the presentations “Ionic Conductive Polyesters-Assessing the Risk of Corrosion in Steel-Reinforced Concrete” by Prof. Weichold and “Alkaline Hydrogels-Multifunctional Materials for Concrete Rehabilitation” by Tim Mrohs (see also entry from 19.9.2023) at the 17th International Congress on Polymer in Concrete (ICPIC 2023) in Warsaw, Poland, have now been published in print.

Weichold, O. (2025). Ionic Conductive Polyesters—Assessing the Risk of Corrosion in Steel-Reinforced Concrete. In: Czarnecki, L., Garbacz, A., Wang, R., Frigione, M., Aguiar, J.B. (eds) Concrete-Polymer Composites in Circular Economy. ICPIC 2023. Springer Proceedings in Materials, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-031-72955-3_34

Mrohs, T., Jung, A., Weichold, O. (2025). Alkaline Hydrogels—Multifunctional Materials for Concrete Rehabilitation. In: Czarnecki, L., Garbacz, A., Wang, R., Frigione, M., Aguiar, J.B. (eds) Concrete-Polymer Composites in Circular Economy. ICPIC 2023. Springer Proceedings in Materials, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-031-72955-3_37

 

New publication
Corrosion current drives corrosion sensor

July 13th, 2017 | by

New corrosion sensor for reinforced concrete requires no external power source. Steel corrosion causes enormous economic damage every year, which could be reduced by installing suitable monitoring devices. These should be simple, reliable and durable and should not require any maintenance or servicing. The present electrochromic device is designed to use the macrocell current of an active, chloride-induced corrosion element as an energy source to trigger a colour change. In this way, the system remains inactive until corrosion occurs. The device consists of diheptyl viologen in a liquid polymer electrolyte of LiClO4 and poly(ethylene glycol). The addition of viologen lowers the resistance but does not cause any further changes in the electrochemical properties of the polymer electrolyte. The impedance spectra indicate that ion transport rather than capacitive effects dominate the electrochemical properties. Experiments with direct current in the μA range show electrochromic switching times of several minutes, which is sufficient for the intended monitoring application.

T. Juraschek, O. Weichold
Development of an electrochromic device triggered by the macrocell current in chloride‐induced corrosion of steel‐reinforced concrete
J. Phys. Org. Chem. 2017, e3739. https://doi.org/10.1002/poc.3739