Archive for December, 2024
Joint publication:Plant protection from insect larvae

The black soldier fly (Hermetia illucens) not only offers a sustainable source of protein, but also the potential to extract chitosan – a versatile biopolymer – from the larval skins. A joint study with the research group led by Dr. Sabine Gruber from the University of Innsbruck and the FH Campus Vienna shows how biological waste from BSF production can be processed into bioactive chitosan using environmentally friendly enzymatic processes. This chitosan has strong antifungal properties and improves the germination and disease resistance of plants such as sugar beet. It therefore offers an environmentally friendly alternative to chemical fungicides and chitosan, which is obtained from crescent shells. This innovation underlines the potential of the insect industry to make good use of waste and create sustainable solutions for agriculture and industry.
C. Escobar Rodríguez, V. Zaremska, T. Klammsteiner, I. Kampatsikas, N. Münstermann, O. Weichold, S. Gruber
Chitosan obtained from black soldier fly larval cuticles expands the value chain and is effective as a biocontrol agent to combat plant pathogens
Carbohydrate Polym. 2025, 349, Part B, 123023 https://doi.org/10.1016/j.carbpol.2024.123023
Anouncement: Polymer Blends & Eurofillers
We are pleased to announce that two exciting presentations from our working group have been accepted at Polymer Blends & Eurofillers 2025 in Lyon from January 27 to 30, 2025:
Paul Marten
Development and Characterization of a Composite Material based on Polylactic Acid, Chitin, and Lecithin
and
Fabian Weitenhagen
Sustainable Biopolymer Composites Using Recycling Cellulose from Wastepaper
Take the opportunity to learn about the latest results from the working group and to talk directly to the members.
New publication: Fire-retardant wood coating

Wood is currently experiencing a renaissance in the construction and furniture industry. With its natural charm, versatility and environmental friendliness, wood is a popular building material. However, this natural material is susceptible to external influences such as moisture, UV radiation, stains and, above all, fire. Fire in particular poses a major risk in the construction industry due to the easy flammability of wood. Once ignited, untreated wood often burns down completely without any external heat supply. N. Münstermann and O. Weichold have now developed an innovative, sustainable wood coating based on polymerized chitosanitaconate. The basis of the coating, chitosan, is a residual product from the food industry and itaconic acid can be obtained biotechnologically. The coating is therefore made entirely from bio-based materials and not only offers protection against moisture, UV radiation and stains, but is also non-flammable. When applied to wood, it delays ignition and significantly inhibits the spread of flames. Just one coat reduces the burning rate by a third. Two coats on spruce wood are enough to make the material self-extinguishing. Three layers are required for hardwoods such as beech. This bio-based approach combines resource conservation with high effectiveness and shows that environmental protection and safety requirements can go hand in hand.
N. Münstermann, O. Weichold
A fire-retardant coating for wood made from chitosan itaconate
Progress in Organic Coatings 2024, 197, 108793 https://doi.org/10.1016/j.porgcoat.2024.108793

