Kategorien
Seiten
-

Elektrotechnik und Informationstechnik

Kategorie: ‘Mikro- und Nanoeletronik’

RWTH und regionale Partner erfolgreich im Ideenwettbewerb „Clusters4Future“

04. Februar 2021 | von

Zukunftscluster „NeuroSys – Neuromorphe Hardware für autonome Systeme der künstlichen Intelligenz“ – wird vom BMBF mit bis zu 90 Millionen Euro gefördert

Das Bundesministerium für Bildung und Forschung (BMBF) hat jetzt die Gewinner des Ideenwettbewerbs „Clusters4Future“ veröffentlicht.  Das BMBF finanziert die Forschungen mit bis zu 90 Millionen Euro. „Clusters4Future“ ist Teil der Hightech-Strategie 2025 der Bundesregierung. Der themenoffene Wettbewerb setzt auf regionale Innovationsnetzwerke, die die Stärken der Akteure verbinden, aufkommende Innovationsfelder erschließen und Lösungen für die Herausausforderungen der Zukunft entwickeln.

In NeuroSys engagieren sich neben der RWTH das Forschungszentrum Jülich, die AMO GmbH, die IHK Aachen, die Unternehmen AixACCT Systems GmbH, AIXTRON SE, AppTek GmbH, ELMOS Semiconductor SE, RWTH Innovation GmbH und STAR Healthcare Management. Darüber hinaus sind die Start-Ups AiXscale Photonics UG, Black Semiconductor GmbH, Clinomic GmbH sowie Gremse-IT GmbH involviert. Professor Max Lemme vom Lehrstuhl für Elektronische Bauelemente und Geschäftsführer der AMO GmbH wird die Arbeiten koordinieren. Ziel ist
die Entwicklung neuromorpher Hardware für Anwendungen der künstlichen Intelligenz und damit eine technologische Unabhängigkeit Deutschlands und Europas. Das Bundesministerium für Bildung und Forschung stellt hierfür bis zu 45 Millionen Euro zur Verfügung.

In Europa gibt nur wenige globale Konzerne im Bereich Hard- und Software. Eine technologische Unabhängigkeit ist von strategischer Bedeutung, da künstliche Intelligenz der Baustein für die nächste weltweite Entwicklungsstufe sein wird. Von dieser Schlüsseltechnologie hängt aber nicht nur das zukünftige Wirtschaftswachstum ab, sondern auch die Bewältigung der großen gesellschaftlichen Herausforderungen wie Klimawandel, Gesundheit, Arbeit oder Mobilität. Künstliche Intelligenz (KI) bringt gleichzeitig neue Herausforderungen, so verursacht das Trainieren großer neuronaler Netze auf Basis moderner Graphikprozessoren (GPUs) mit DeepLearning-Methoden hohe CO2-Emissionen, die die Klimaproblematik weiter verschärfen. Neuronale Netze auf GPU Basis sind daher ökologisch nicht nachhaltig.

Ressourcenschonende neuromorphe Hardware, die neuronale Netze effizienter gestaltet und Datensicherheit als Designkomponente vorsieht, wird daher zum Schlüssel für den breiten Einsatz von KI. Dies gilt vor allem für Einsatzbereiche in autonomen Fahrzeugen, der Medizintechnik und Sensornetzwerken für intelligente Produktion oder Städteregionen. Neuromorphe Systeme sind den zwei Grundbausteinen des menschlichen Gehirns, den Neuronen und den Synapsen, nachempfunden. Sie können durch die Integration neuer Materialien mit bestimmten Eigenschaften eine
ressourcenschonende Vor-Ort-Verarbeitung von Daten ideal leisten. Dies wird unter dem Stichwort „memristiv“ zusammengefasst – aus dem Englischen „memory“ für Speicher und „resistor“ für elektrischer Widerstand.

Die Wissenschaftlerinnen und Wissenschaftler der RWTH und des Forschungszentrums Jülich konnten bereits die Funktionalität von neuromorphen Bauelementen aus memristiven Materialien nachweisen. Allerdings gibt es weltweit keine Pilotlinien und Produktionskapazitäten zur Herstellung beziehungsweise Integration von neuromorphen Chips im industriellen Maßstab.
Auch muss das System aus Hardware, Design, Algorithmen und anwendungsgetriebener Software zusammenwirken, um die großen Vorteile neuromorpher Hardware nutzen zu können.
Erforderlich ist daher ein Paradigmenwechsel mit der Chance, in dieser neuen Technologie eine Spitzenposition einzunehmen. NeuroSys will hier die entscheidenden Voraussetzungen erarbeiten.

Neben dem wirtschaftlichen Erfolg sind Aspekte wie der gesellschaftliche Nutzen und die Ethik einer künstlichen Intelligenz zu berücksichtigen. Diese sozio-ökonomischen Rahmenbedingungen sind von essenzieller Bedeutung für neue Technologien, insbesondere mit einer solchen potenziellen Reichweite. Sie werden daher in NeuroSys erforscht, auch um Handlungsempfehlungen für Gesellschaft und Politik zu erarbeiten.

„Der Zukunftscluster ist eine große Chance für die Region Aachen-Jülich, insbesondere im Zusammenhang mit dem Strukturwandel im Rheinischen Revier. Wir treten an, exzellente Wissenschaft in Unternehmen und Start-Ups in der Region zu transferieren. Unsere Vision ist der Aufbau einer Fabrikationslinie in der Region Aachen. Dort soll dann die Co-Integration neuromorpher Funktionen durch neue Materialien in konventionelle Siliziumtechnologie erfolgen“ – Professor Lemme.

Wir gratulieren ebenfalls dem Lehrstuhl für Verbrennungskraftmaschinen, denn zu den sieben geförderten Clustern gehört neben „NeuroSys – Neuromorphe Hardware für autonome Systeme der künstlichen Intelligenz“ noch das  Zukunftscluster „Wasserstoff“, welches  in den nächsten Jahren ebenfalls von der RWTH koordiniert wird. Die RWTH Aachen und das Forschungszentrum Jülich waren Antragsteller zum Zukunftscluster „Wasserstoff“. Bisher sind 24 Institute der beiden Forschungseinrichtungen involviert, hinzu kommen bereits 47 Industriepartner und 16 weitere Organisationen.

Quelle: Pressemitteilung der RWTH Aachen

 

Neuromorphes Computing

18. September 2020 | von

DFG Förderung für „Memristive Devices Toward Smart Technical Systems“

Die Deutsche Forschungsgemeinschaft (DFG) fördert ihm Rahmen des Schwerpunktprogramms „Memristive Devices Toward Smart Technical Systems“ fünf Projekte unter Beteiligung von Mitgliedern der Fakultät für Elektrotechnik und Informationstechnik der RWTH Aachen. Vier davon sind Projekte am Lehrstuhl von Prof. Rainer Waser Institut für Werkstoffe der Elektrotechnik II bzw. dem Peter Grünberg Institut des Forschungszentrum Jülich gefördert. Ein weiteres Projekt wurde im Lehr- und Forschungsgebiet von Prof. Regina Dittmann „Technologie der Oxidelektronik“ ebenfalls am Peter Grünberg Institut bewilligt.

Die Förderhöhe der fünf Jülich-Aachener Projekte beläuft sich auf ca. 1,2 Mio EURO für die Laufzeit des Schwerpunktprogramms von 3 Jahren. Im Rahmen der unterschiedlichen Projekte wird die Fakultät 6 in Kooperation mit anderen Forschungseinrichtungen wie der TU Dresden, der TU Chemnitz, dem Karlsruher Institut für Technologie (KIT), des Helmholtz-Zentrums Berlin, der TU Berlin und des NMI – Naturwissenschaftliches und Medizinisches Institut – an der Universität Tübingen und des Groningen Cognitive Systems and Materials Center (CogniGron) memristive Bauelemente für den Einsatz in neuartigen energie-effizienten Rechnerstrukturen oder für intelligente Sensoranwendungen für das zukünftige Internet der Dinge entwickeln.

Zu den Projekten:

Im Projekt “Memristive Time difference encoder (MemTDE)” die Gruppe von Frau Dittmann und das Groningen Cognitive Systems and Materials Center (CogniGron) an der Entwicklung einer memristorbasierten intelligenten Elektronik zur Verarbeitung von Sensorsignalen für das Internet der Dinge. Diese soll die gesammelten Informationen vor Ort verarbeiten, anstatt sie mit viel Energieaufwand drahtlos zu übermitteln.

Im Projekt „Hybrid MEMristor-CMOS Micro Electrode Array bio-sensing platform (MEMMEA)” streben die Partner des PGI-7, des Helmholtz-Zentrums Berlin, der TU Berlin und des NMI – Naturwissenschaftliches und Medizinisches Institut – an der Universität Tübingen die Entwicklung von Sensoren an, die die Aktivität biologischer Neuronen direkt aufzeichnen können. Diese auf Memristor-CMOS-Hybridschaltungen basierenden Sensoren ermöglichen eine direkte On-Chip-Signalverarbeitung und eröffnen ein neues Feld der biologischen Signalverarbeitung.

Im Projekt „Domino Processing Unit: Towards Novel High Efficient In-Memory-Computing (MemDPU)” arbeiten die Partner des PGI-7 und der Technischen Universität Chemnitz an einem neuartigen Rechenwerk, der Domino Processing Unit (DPU). Im Gegensatz zum herkömmlichen von-Neumann-Architektur-Rechenwerk ermöglicht diese DPU das Rechnen direkt im Speicher. Mit der DPU wird der hohe Energieverbrauch durch die Kommunikation zwischen Speicher und Rechenwerk eingespart.

Im Projekt “Universal Memcomputing in Hardware Realizations of Memristor Cellular Nonlinear Networks (Mem2CNN)” verfolgen die Partner des PGI-10, PGI-7 und der TU Dresden die Entwicklung von memristiven zellulären neuronalen Netzwerken. Diese Netzwerke ermöglichen, Videosignale, zum Beispiel in Form von Kantenerkennung für die Musterkennung, direkt zu verarbeiten. Dadurch könnten visuelle Daten in Echtzeit verarbeitet werden.

Im Projekt „Robust Compute-in Memory using Memristors : ROBCOMM“ arbeiten die Partner des IWE 2, PGI-7 und Karlsruher Institut of Technology (KIT) an der Entwicklung zuverlässiger, effizienter Schaltungen basierend auf memristiven Bauelementen, die eine Computation-in-Memory(CIM)-Architektur ermöglichen. Die CIM-Architektur ermöglicht, komplexe Rechenoperation, wie Vektor-Matrix-Operationen, effizient durchzuführen oder große Gleichungssysteme direkt zu lösen.