Die Achillesferse der zweidimensionalen Transistoren heilen
Stabilität – im Sinne eines stabilen Betriebs über die gesamte Lebensdauer – ist eine der wichtigsten Eigenschaften, die ein elektronisches Bauelement aufweisen muss, um für Anwendungen geeignet zu sein. Und sie ist die Achillesferse von Transistoren auf Basis zweidimensionaler Materialien, die typischerweise eine wesentlich schlechtere Stabilität aufweisen als Bauelemente auf Siliziumbasis. Ein Team von Forschern der TU Wien, der AMO GmbH, der RWTH Aachen und der Bergischen Universität Wuppertal hat nun einen neuartigen, technischen Ansatz zur Verbesserung der elektrischen Stabilität von zweidimensionalen Transistoren durch sorgfältige Abstimmung der Fermi-Energie vorgestellt. Die Ergebnisse wurden in der Nature Electronics veröffentlicht.
Heute besteht kaum noch ein Zweifel daran, dass Bauelemente auf der Basis von Graphen und anderen zweidimensionalen (2D) Materialien dank ihrer Eigenschaften den Stand der Technik für bestimmte Anwendungen übertreffen können. Zweidimensionale Materialien gelten auch als einige der aussichtsreichsten Kandidaten für die Realisierung von Transistoren in Endgröße am Ende des Fahrplans der Siliziumtechnologie. Allerdings weisen Bauelemente, die auf 2D-Materialien basieren, oft eine schlechte elektrische Stabilität auf, d. h. ihr Verhalten ändert sich je nach Betriebsverlauf.
„Die Zuverlässigkeit von Bauteilen ist ein Aspekt, der in der Forschung oft vernachlässigt wird. Genau daran arbeiten wir seit einigen Jahren, denn sie ist für die Anwendung von zentraler Bedeutung“, erklärt Professor Max Lemme, wissenschaftlicher Direktor der AMO GmbH und Leiter des Lehrstuhls für Elektronische Bauelemente an der RWTH. Die Instabilität wird nicht nur durch die 2D-Materialien selbst verursacht, sondern vor allem durch Ladungen, die in den Oxid-Isolator eingeschlossen sind, der zur Herstellung der Transistoren verwendet wird. „Idealerweise würde man einen anderen Isolator mit weniger Ladungsfallen verwenden“, sagt Lemme, „aber dafür gibt es noch keine skalierbaren Lösungen. In unserer Arbeit haben wir stattdessen gezeigt, dass es möglich ist, einen Standardisolator wie Aluminiumoxid zu verwenden und die nachteiligen Auswirkungen der Ladungsfallen im Oxid deutlich zu unterdrücken, indem man die Ladungsträgerdichte im 2D-Material anpasst.“
Die Arbeit kombiniert eine gründliche theoretische Analyse des neuartigen Ansatzes – den die Autoren als „stabilitätsbasiertes Design“ bezeichnen – mit einer prinzipiellen Demonstration des Konzepts, das durch die Messung verschiedener Arten von FETs auf Graphenbasis erfolgt. Der Kerngedanke des Ansatzes besteht darin, die Kombination aus 2D-Material und Isolator so zu gestalten, dass sich die Energie der Ladungsfallen im Isolator so weit wie möglich von der Energie der Ladungsträger im 2D-Material unterscheidet. Lemme erklärt: „Graphen-basierte FETs waren das ideale Testfeld für unseren Ansatz, da es relativ einfach ist, die Energie der Ladungsträger in Graphen einzustellen. Der Ansatz ist jedoch auf alle FETs anwendbar, die auf 2D-Halbleitern basieren.“ Diese Ergebnisse sind ein wichtiger Schritt auf dem Weg zu stabilen und zuverlässigen Transistoren aus 2D-Materialien, die in die Halbleitertechnologie integriert werden können.
Bibliographische Informationen:
T. Knobloch, B. Uzlu, Y. Yu. I.llarionov, Z. Wang, M. Otto, L. Filipovic, M. Waltl, D. Neumaier, M. C. Lemme, T. Grasser, Improving stability in two-dimensional transistors with amorphous gate oxides by Fermi-level tuning, Nature Electronics (2022) – Open Access
DOI: 10.1038/s41928-022-00768-0
Kontakt:
Prof. Max C. Lemme
AMO GmbH
lemme@amo.de
Schreibe einen Kommentar