Archiv für August 2022
Programmierkurse mit der FANUC Education Cell und RoboGuide
Einer der wesentlichen Faktoren bei der Arbeit mit Robotern am IGMR ist nicht nur die theoretische Betrachtung, Berechnung und Optimierung der Bewegung oder Mechanik, sondern insbesondere auch die praktische Arbeit und der Umgang mit den Systemen sowie auch die verschiedenen Programmierungen. Eines der Kernstücke dieser praktischen Lehre ist die FANUC Education Cell, welche auch in der Vorlesung Robotic Systems und den Robotik-Kursen der International Academy ein fundamentaler Bestandteil ist. Neben den Vorlesungen bietet das IGMR vertreten durch Carlo Weidemann, Gewinner der FANUC Olympiad 2020, auch interne Anwenderkurse für Mitarbeiter an und bietet diesen die Möglichkeit, selbstständig an der Zelle arbeiten zu können.
Sie studieren an der RWTH und haben Interesse, mit Robotern wie dem FANUC LR Mate 200iD 4S zu arbeiten oder Projekte umzusetzen? Vielleicht haben Sie auch eine konkrete Idee für eine Abschlussarbeit mit dem Roboter? Dann melden Sie sich gerne bei uns. Wir freuen uns!
Ansprechpartner:
Carlo Weidemann
Sophie Charlotte Keunecke
AKPro-Studierende präsentiert eindrucksvolle Projektergebnisse bei der Trapo AG
Im vergangenen Jahr wurden die Projekte der Veranstaltung „Angewandte Konstruktion und Produktentwicklung I /II“ von der Trapo AG gestellt und begleitet. Nun haben die Studierenden die Möglichkeit bekommen, die Trapo AG in Gescher zu besuchen und die Ergebnisse der Geschäftsleitung vorzustellen.Im Anschluss an die Präsentationen durften die Studierenden die verschiedenen Aufgabenbereiche der Trapo AG besichtigen und einen Blick auf die Fertigung und die Finalisierung werfen. Gratulation an alle AKPro Teilnehmer für den ausgesprochen erfolgreichen Abschluss ihrer Projekte! Vielen Dank an die Trapo AG für die Unterstützungen der Projekte und die Möglichkeit der Besichtigung.
Ansprechpartner:
Erste Bewegung des PARAGRIPs mit neuer Steuerung
Um für seine zukünftigen Aufgaben in der Multidirektionalen Additiven Fertigung (MDAM) mittels Lichtbogenschweißen (WAAM) optimal gewappnet zu sein, wurde die Steuerungsarchitektur des PARAGRIPs grundlegend überarbeitet. Ab sofort können Bewegungen aller vier Arme unter ROS2 mit MoveIt geplant, simuliert und am echten Roboter ausgeführt werden. Dabei werden die Gelenkstellungen des physischen Roboters stets an ROS2 zurückgespielt, wodurch eine Integration von online-Planungsalgorithmen in der Zukunft ermöglicht wird. Das Video zeigt die Planung und Ausführung einer einfachen Testbewegung des PARAGRIPs.
Weitere Informationen zu dem Projekt findet ihr hier.
Ansprechpartner: Jan Wiartalla
IGMR Konsens im Sensor-Roboter-Netzwerk
Agile, frei vernetzte Montagesysteme zeichnen sich durch die sensorgestützte Kooperation mehrerer mobiler und stationärer Roboter aus. Die dynamische Rekonfiguration von Produktionslinien erfordert jedoch spezielle Steuerungsstrategien für Robotermanipulatoren. Es sollen schnelle und zuverlässige Bewegungsplanungs- und Steuerungsverfahren entwickelt werden, die auf Änderungen der Umgebung und der Sollwerte adäquat reagieren und ausführbare Bewegungen erzeugen. Diese Montagesysteme können dann in der Struktur eines Metamodells abgebildet werden, das zur Erstellung digitaler Schatten der Fabriken der Zukunft führt.
Kontakperson: Daniel Gossen
Das Video auf unserem Yotube Kanal: hier.
Ein mehrschichtiger Task-Sequencing-Ansatz
Cobots sind bei Fertigungsunternehmen im Gegensatz zu vollautomatischen Produktionslinien sehr gefragt, da sie den zusätzlichen Vorteil eines flexiblen Betriebs bieten. Eine große Herausforderung bei den derzeitigen kollaborativen Systemen sind die langwierigen Setup-Zeiten für eine effiziente und robuste Mensch-Roboter Kollaboration sowie die schlechte Unterstützung für zufällige Unterbrechungen.
Dieses Projekt zielt darauf ab, autonome kollaborative Prozessschritte für serielle Manipulatoren zu ermöglichen, bei denen Unterbrechungen durch menschliches Eingreifen auftreten können. Zu diesem Ziel werden zwei Hauptaspekte behandelt, die die Ausführung von Aufgaben beeinflussen, nämlich die Ausführungszeit und die Kollaboration:
1. Eine Methode zur Minimierung der zurückgelegten Gesamtstrecke wird entwickelt, in der die für die jeweilige Aufgabe optimale Sequenz von Prozessschritten unter Beibehaltung der Online-Betriebsfähigkeiten eingehalten wird.
2. Ein Echtzeit-Algorithmus wird entwickelt und implementiert, der die Mersch-Roboter Kollaboration in Umgebungen mit zufälligen Unterbrechungen ermöglicht. Das Ziel ist den Betrieb auch dann aufrechtzuerhalten und die Sicherheit der menschlichen Mitarbeiter zu gewährleisten, wenn Bereiche des Arbeitsraums verdeckt sind.
Ein Beispiel für den Einsatz auf einer Prototyp-Plattform, bestehend aus einem kollaborativen UR10e-Arm, einer Stereokamera zur statischen Umgebungserfassung und einem Laserscanner zur Erfassung von dynamischen Hindernissen, wird im Video gezeigt.
Ansprechpartner: Daniel Gossen
Musik: madiRFAN – Both of Us (https://pixabay.com/music/beats-madirfan-both-of-us-14037/)
Das Video auf unserem Kanal: hier.
IGOR Tper: der Roboter mit nicht-sphärischem Handgelenk
Die nächste Generation unseres Roboters ist entworfen. Der neue Roboter heißt IGOR Tper. Dieser Roboter hat ein nicht sphärisches Handgelenk, wodurch die Bewegungsplanung für den Roboter anspruchsvoll wird.
Ansprechpartner:
Markus Schmitz